1887

Abstract

Summary

Although all herpesviruses are similar in their temporal regulation of gene expression, the organization of the immediate early (IE) genes varies markedly between the different members of the group. Most of the IE transcripts of human cytomegalovirus originate from a restricted region within the long unique segment of its linear dsDNA genome of 235 kb. One of the predominant transcripts from the IE region is a 5 kb RNA. Northern blot analyses revealed that this class of RNA is continuously present in infected cells. It was detected at high levels in IE and late RNA preparations, and in low amounts in early RNA preparations. It was not confined to the poly(A) fraction upon oligo(dT) selection, but also appeared in similar amounts in poly(A) fractions. Fine mapping of this transcript was done by nuclease protection and primer extension. The RNA appeared to be unspliced, and no signals such as TATA or CCAAT, known to be important elements in eukaryotic RNA polymerase II promoters, were found close to the 5′ end. Sequence analysis revealed multiple stop codons throughout the AT-rich potential coding region. Since no splicing was found to occur, the largest protein deduced from the DNA sequence would be of not more than 12000 . However, a computer program designed to detect protein-coding DNA sequences by codon usage did not reveal significant evidence for a protein encoded in this region. Therefore this RNA is likely to represent an unprecedented case of a large non-coding transcript present in cells that are lytically infected by an animal virus.

Keyword(s): CMV , human , promoter and transcription
Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-69-9-2251
1988-09-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/69/9/JV0690092251.html?itemId=/content/journal/jgv/10.1099/0022-1317-69-9-2251&mimeType=html&fmt=ahah

References

  1. AKUSJÄRVI G., MATHEWS M. B., ANDERSSON P., VENNSTRÖM B., PETTERSSON U. 1980; Structure of genes for virus-associated RNAj and RNAn of adenovirus type 2. Proceedings of the National Academy of Sciences, U.S.A 77:2424–2428
    [Google Scholar]
  2. BERGET S. 1984; Are U4 small nuclear ribonucleoproteins involved in polyadenylation?. Nature, London 309:179–182
    [Google Scholar]
  3. BERGSMA D. J., OLIVE D. M., HARTZELL S. W., SUBRAMANIAN K. N. 1982; Territorial limits and functional anatomy of the simian virus 40 replication origin. Proceedings of the National Academy of Sciences, U.S.A 79:381–385
    [Google Scholar]
  4. BERK A. J., SHARP P. A. 1977; Sizing and mapping of early adenovirus mRNAs by gel electrophoresis of S1 endonuclease-digested hybrids. Cell 12:721–732
    [Google Scholar]
  5. BIRNSTIEL M. L., BUSSLINGER M., STRUB K. 1985; Transcription termination and 3′ processing: the end is in site!. Cell 41:349–359
    [Google Scholar]
  6. BODESCOT M., BRISON O., PERRICAUDET M. 1986; An Epstein-Barr virus transcription unit is at least 84 kilobases long. Nucleic Acids Research 14:2611–2620
    [Google Scholar]
  7. BOSHART M., WEBER F., JAHN G., DORSCH-HÄSLER K., FLECKENSTEIN B., SCHAFFNER W. 1985; A very Strong enhancer is located upstream of an immediate early gene of human cytomegalovirus. Cell 41:521–530
    [Google Scholar]
  8. BURKE J. F. 1984; High-sensitivity S1 mapping with single-stranded [32P]DNA probes synthesized from bacteriophage M13mp templates. Gene 30:63–68
    [Google Scholar]
  9. BZIK D. J., PRESTON C. M. 1986; Analysis of DNA sequences which regulate the transcription of herpes simplex virus immediate early gene 3: DNA sequences required for enhancer-like activity and response to trans-activation by a virion polypeptide. Nucleic Acids Research 14:929–943
    [Google Scholar]
  10. CAMPBELL M. E. M., PALFREYMAN J. W., PRESTON C. M. 1984; Identification of herpes simplex virus DNA sequences which encode a trans-acting polypeptide responsible for stimulation of immediate early transcription. Journal of Molecular Biology 180:1–19
    [Google Scholar]
  11. CHANDLER S. H., MCDOUGALL I. K. 1986; Comparison of restriction site polymorphisms among clinical isolates and laboratory strains of human cytomegalovirus. Journal of General Virology 67:2179–2192
    [Google Scholar]
  12. CHIRGWIN J. M., PRZYBYLA A. E., MACDONALD R. J., RUTTER W. J. 1979; Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18:5294–5299
    [Google Scholar]
  13. CRANAGE M. P., KOUZARIDES T., BANKIER A. T., SATCHWELL S., WESTON K., TOMLINSON P., BARRELL B., HART H., BELL S. E., MINSON A. C, SMITH G. L. 1986; Identification of the human cytomegalovirus glycoprotein B gene and induction of neutralizing antibodies via its expression in recombinant vaccinia virus. EMBO Journal 5:3057–3063
    [Google Scholar]
  14. DEMARCHI J. M. 1981; Human cytomegalovirus DNA: restriction enzyme cleavage maps and map locations for immediate-early, early, and late RNAs. Virology 114:23–38
    [Google Scholar]
  15. DEMARCHI J. M. 1983; Post-transcriptional control of human cytomegalovirus gene expression. Virology 124:390–402
    [Google Scholar]
  16. DEVEREUX J., HAEBERLI P., SMITHIES O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Research 12:387–395
    [Google Scholar]
  17. DYNAN W. S., TJIAN R. 1983; The promoter-specific transcription factor Spl binds to upstream sequences in the SV40 early promoter. Cell 35:79–87
    [Google Scholar]
  18. EBELING A., KEIL G., NOWAK B., FLECKENSTEIN B., BERTHELOT N., SHELDRICK P. 1983; Genome structure and virion polypeptides of the primate herpesviruses Herpesvirus aotus types 1 and 3: comparison with human cytomegalovirus. Journal of Virology 45:715–726
    [Google Scholar]
  19. FABER S. W., WILCOX K. W. 1986; Association of the herpes simplex virus regulatory protein ICP4 with specific nucleotide sequences in DNA. Nucleic Acids Research 14:6067–6083
    [Google Scholar]
  20. FLECKENSTEIN B., MÜLLER I., COLLINS J. 1982; Cloning of the complete human cytomegalovirus genome in cosmids. Gene 18:39–46
    [Google Scholar]
  21. GAFFNEY D. F., MCLAUCHLAN J., WHITTON J. L., CLEMENTS J. B. 1985; A modular system for the assay of transcription regulatory signals: the sequence TAATGARAT is required for herpes simplex virus immediate early gene activation. Nucleic Acids Research 13:7847–7863
    [Google Scholar]
  22. GEBALLE A. P., LEACH F. S., MOCARSKI E. S. 1986a; Regulation of cytomegalovirus late gene expression: y genes are controlled by post transcriptional events. Journal of Virology 57:864–874
    [Google Scholar]
  23. GEBALLE A. P., SPAETE R. R., MOCARSKI E. S. 1986b; A m-acting element within the 5′ leader of a cytomegalovirus β transcript determines kinetic class. Cell 46:865–872
    [Google Scholar]
  24. GOINS W. F., STINSKI M. F. 1986; Expression of a human cytomegalovirus late gene is posttranscriptionally regulated by a 3′-end-processing event occurring exclusively late after infection. Molecular and Cellular Biology 6:4202–4213
    [Google Scholar]
  25. GREENAWAY P. J., WILKINSON G. W. G. 1987; Nucleotide sequence of the most abundantly transcribed early gene of human cytomegalovirus strain AD169. Virus Research 7:17–31
    [Google Scholar]
  26. GRIBSKOV M., DEVEREUX J., BURGESS R. R. 1984; The codon preference plot: graphic analysis of protein coding sequences and prediction of gene expression. Nucleic Acids Research 12:539–549
    [Google Scholar]
  27. HALL A., BROWN R. 1985; Human N-ras: cDNA cloning and gene structure. Nucleic Acids Research 13:5255–5268
    [Google Scholar]
  28. HEILBRONN R., JAHN G., BÜRKLE A., FREESE U.-K., FLECKENSTEIN B., ZUR HAUSEN H. 1987; Genomic localization, sequence analysis, and transcription of the putative human cytomegalovirus DNA polymerase gene. Journal of Virology 61:119–124
    [Google Scholar]
  29. HENNIGHAUSEN L., FLECKENSTEIN B. 1986; Nuclear factor 1 interacts with five DNA elements in the promoter region of the human cytomegalovirus major immediate early gene. EMBO Journal 5:1367–1371
    [Google Scholar]
  30. HUBENTHAL-VOSS J., STARR L., ROIZMAN B. 1987; The herpes simplex virus origins of DNA synthesis in the S component are each contained in a transcribed open reading frame. Journal of Virology 61:3349–3355
    [Google Scholar]
  31. HUTCHINSON N. L, SONDERMEYER R. T., TOCCI M. J. 1986; Organization and expression of the major genes from the long inverted repeat of the human cytomegalovirus genome. Virology 155:160–171
    [Google Scholar]
  32. JAHN G., KNUST E., SCHMOLLA H., SARRE T., NELSON J. A., MCDOUGALL J. K., FLECKENSTEIN B. 1984a; Predominant immediate-early transcripts of human cytomegalovirus AD169. Journal of Virology 49:363–370
    [Google Scholar]
  33. JAHN G., NELSON I. A., PLACHTER B., MCDOUGALL J. K., FLECKENSTEIN B. 1984b Transcription of a human cytomegalovirus DNA region which is capable of transforming rodent cells. Herpesvirus455–463 Edited by Rapp F. New York: Alan R. Liss;
    [Google Scholar]
  34. JAHN G., KOUZARIDES T., MACH M., SCHOLL B.-C, PLACHTER B., TRAUPE B., PREDDIE E., SATCHWELL S. C, FLECKENSTEIN B., BARRELL B. G. 1987; Map position and nucleotide sequence of the gene for the large structural phosphoprotein of human cytomegalovirus. Journal of Virology 61:1358–1367
    [Google Scholar]
  35. KOUZARIDES T., BANKIER A. T., BARRELL B. G. 1983; Nucleotide sequence of the transforming region of human cytomegalovirus. Molecular Biology and Medicine 1:47–58
    [Google Scholar]
  36. KOUZARIDES T., BANKIER A. T., SATCHWELL S. C, WESTON K., TOMLINSON P., BARRELL B. G. 1987; Large-scale rearrangement of homologous regions in the genomes of HCMV and EBV. Virology 157:397–413
    [Google Scholar]
  37. KOZAK M. 1984; Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs. Nucleic Acids Research 12:857–872
    [Google Scholar]
  38. KRISTIE T. M., ROIZMAN B. 1987; Host cell proteins bind to the cis-acting site required for virion-mediated induction of herpes simplex virus 1 a genes. Proceedings of the National Academy of Sciences, U.S.A 84:71–75
    [Google Scholar]
  39. MCDONOUGH S. H., SPECTOR D. H. 1983; Transcription in human fibroblasts permissively infected by human cytomegalovirus strain AD169. Virology 125:31–46
    [Google Scholar]
  40. MCDONOUGH S. H., STAPRANS S. I., SPECTOR D. H. 1985; Analysis of the major transcripts encoded by the long repeat of human cytomegalovirus strain AD 169. Journal of Virology 53:711–718
    [Google Scholar]
  41. MACH M., UTZ U., FLECKENSTEIN B. 1986; Mapping of the major glycoprotein gene of human cytomegalovirus. Journal of General Virology 67:1461–1467
    [Google Scholar]
  42. MACKEM S., ROIZMAN B. 1982; Structural features of the herpes simplex virus a gene 4, 0, and 27 promoter-regulatory sequences which confer a regulation on chimeric thymidine kinase genes. Journal of Virology 44:939–949
    [Google Scholar]
  43. MCKNIGHT S. L., KINGSBURY R. C, SPENCE A., SMITH M. 1984; The distal transcription signals of the herpesvirus tk gene share a common hexanucleotide control sequence. Cell 37:253–262
    [Google Scholar]
  44. MCLAUCHLAN J., GAFFNEY D., WHITTON J. L., CLEMENTS J. B. 1985; The consensus sequence YGTGTTYY located downstream from the AATAAA signal is required for efficient formation of mRNA 3′ termini. Nucleic Acids Research 13:1347–1368
    [Google Scholar]
  45. MANIATIS T., FRITSCH E. F., SAMBROOK J. 1982 Molecular Cloning: A Laboratory Manual New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  46. MAXAM A. M., GILBERT W. 1977; A new method for sequencing DNA. Proceedings of the National Academy of Sciences, U.S.A 74:560–564
    [Google Scholar]
  47. MELTON D. A., KRIEG P. A., REBAGLIATI M. R., MANIATIS T., ZINN K., GREEN M. R. 1984a; Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Research 12:7035–7056
    [Google Scholar]
  48. MELTON D. W., KONECKI D. S., BRENNAND J., CASKEY C T. 1984b; Structure, expression, and mutation of the hypoxanthine phosphoribosyltransferase gene. Proceedings of the National Academy of Sciences, U.S.A 81:2147–2151
    [Google Scholar]
  49. MOCARSKI E. S., PEREIRA L., MICHAEL N. 1985; Precise localization of genes on large animal virus genomes: use of λgt11 and monoclonal antibodies to map the gene for a cytomegalovirus protein family. Proceedings of the National Academy of Sciences, U.S.A 82:1266–1270
    [Google Scholar]
  50. MULLER M. T. 1987; Binding of the herpes simplex virus immediate-early gene product ICP4 to its own transcription start site. Journal of Virology 61:858–865
    [Google Scholar]
  51. NELSON J. A., FLECKENSTEIN B., JAHN G., GALLOWAY D. A., MCDOUGALL J. K. 1984; Structure of the transforming region of human cytomegalovirus AD169. Journal of Virology 49:109–115
    [Google Scholar]
  52. ORTIN J., DOERFLER W. 1975; Transcription of the genome of adenovirus type 12. Viral mRNA in abortively infected and transformed cells. Journal of Virology 15:27–35
    [Google Scholar]
  53. PROUDFOOT N. J., SHANDER M. H. M., MANLEY J. L., GEFTER M. L., MANIATIS T. 1980; Structure and in vitro transcription of human globin genes. Science 209:1329–1336
    [Google Scholar]
  54. ROSA M. D., GOTTLIEB E., LERNER M. R., STEITZ J. A. 1981; Striking similarities are exhibited by two small Epstein-Barr virus-encoded ribonucleic acids and the adenovirus-associated ribonucleic acids VAI and VAII. Molecular and Cellular Biology 1:785–796
    [Google Scholar]
  55. RÜGER B., KLAGES S., WALLA B., ALBRECHT J., FLECKENSTEIN B., TOMLINSON P., BARRELL B. 1987; Primary structure and transcription of the genes coding for the two virion phosphoproteins pp65 and pp71 of human cytomegalovirus. Journal of Virology 61:446–453
    [Google Scholar]
  56. SANGER F., NICKLEN S., COULSON A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, U.S.A 74:5463–5467
    [Google Scholar]
  57. SHAW S. B., RASMUSSEN R. D., MCDONOUGH S. H., STAPRANS S. I., VACQUIER J. P., SPECTOR D. H. 1985; Cell-related sequences in the DNA genome of human cytomegalovirus strain AD169. Journal of Virology 55:843–848
    [Google Scholar]
  58. SOEDA E., ARRAND J. R., SMOLAR N., GRIFFIN B. E. 1979; Sequence from early region of polyoma virus DNA containing viral replication origin and encoding small, middle and (part of) large T antigens. Cell 17:357–370
    [Google Scholar]
  59. SOMOGYI T., COLIMON R., BERTRAND C., MICHELSON S. 1987; Conservation and map location of human cytomegalovirus strain AD169 transforming sequences in the DNA of clinical isolates. Microbiologia 10:125–131
    [Google Scholar]
  60. STAPRANS S. I., SPECTOR D. H. 1986; 2.2-kilobase class of early transcripts encoded by cell-related sequences in human cytomegalovirus strain AD169. Journal of Virology 57:591–602
    [Google Scholar]
  61. STENBERG R. M., THOMSEN D. R., STINSKI M. F. 1984; Structural analysis of the major immediate early gene of human cytomegalovirus. Journal of Virology 49:190–199
    [Google Scholar]
  62. STENBERG R. M., WITTE P. R., STINSKI M. F. 1985; Multiple spliced and unspliced transcripts from human cytomegalovirus immediate-early region 2 and evidence for a common initiation site within immediate early region 1. Journal of Virology 56:665–675
    [Google Scholar]
  63. STINSKI M. F., THOMSEN D. R., STENBERG R. M., GOLDSTEIN L. C. 1983; Organization and expression of the immediate early genes of human cytomegalovirus. Journal of Virology 46:1–14
    [Google Scholar]
  64. STOW N. D., MCMONAGLE E. C. 1983; Characterization of the TRS/IRS origin of DNA replication of herpes simplex virus type 1. Virology 136:427–438
    [Google Scholar]
  65. VIGNERON M., BARRERA-SALDANA H. A., BATY D., EVERETT R. E., CHAMBON P. 1984; Effect of the 21-bp repeat upstream element on in vitro transcription from the early and late SV40 promoters. EMBO Journal 3:2373–2382
    [Google Scholar]
  66. WATHEN M. W., STINSKI M. F. 1982; Temporal patterns of human cytomegalovirus transcription: mapping the viral RNAs synthesized at immediate early, early, and late times after infection. Journal of Virology 41:462–477
    [Google Scholar]
  67. WATHEN M. W., THOMSEN D. R., STINSKI M. F. 1981; Temporal regulation of human cytomegalovirus transcription at immediate early and early times after infection. Journal of Virology 38:446–459
    [Google Scholar]
  68. WELLER S. A., SPADARO A., SCHAFFER J. E., MURRAY A. W., MAXAM A. M., SCHAFFER P. A. 1985; Cloning, sequencing, and functional analysis of oriL, a herpes simplex virus type 1 origin of DNA synthesis. Molecular and Cellular Biology 5:930–942
    [Google Scholar]
  69. WILBUR W. J., LIPMAN D. J. 1983; Rapid similarity searches of nucleic acid and protein data banks. Proceedings of the National Academy of Sciences, U.S.A 80:726–730
    [Google Scholar]
  70. WILKINSON G. W. G., AKRIGG A., GREENAWAY P. J. 1984; Transcription of the immediate early genes of human cytomegalovirus strain AD169. Virus Research 1:101–116
    [Google Scholar]
  71. YATES J., WARREN N., REISMAN D., SUGDEN B. 1984; A cisacting element from the Epstein-Barr virus genome that permits stable replication of recombinant plasmids in latently infected cells. Proceedings of the National Academy of Sciences, U.S.A 81:3806–3810
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-69-9-2251
Loading
/content/journal/jgv/10.1099/0022-1317-69-9-2251
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error