Varicella-Zoster Virus DNA from Persistently Infected Cells Contains Novel Tandem Duplications Free

Abstract

Summary

A persistent infection with varicella-zoster virus was established in the Mewo human melanoma cell line. This persistently infected cell line went through periodic crises of virus-induced cell killing and then recovery. Analyses of viral DNA derived from the persistently infected cultures revealed that novel viral nucleic acid rearrangements had been generated. These viral DNA sequences were derived from a specific region of the inverted repeat sequence of the genome flanking the short unique genome segment. The novel DNA was of various lengths, each generated by tandem duplication of an approximately 2760 base pair sub-sequence of the normal viral inverted repeat. These novel sequences were inserted into an otherwise apparently normal genome.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-69-9-2229
1988-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/69/9/JV0690092229.html?itemId=/content/journal/jgv/10.1099/0022-1317-69-9-2229&mimeType=html&fmt=ahah

References

  1. BARRETT A. D. T., DIMMOCK N. J. 1986; Defective interfering viruses and infection of animals. Current Topics in Microbiology and Immunology 128:55–84
    [Google Scholar]
  2. BAUMANN R. P., STACZEK J., O’CALLAGHAN D. J. 1986; Cloning and fine mapping the DNA of equine herpesvirus type one defective interfering particles. Virology 153:188–200
    [Google Scholar]
  3. BISWAL N., KO U., AKMAN S., ROSS D. D., POLLAK A., CIMINO E. 1983; Persistence of herpes simplex virus type-2 genome in a human leukemic cell line. Biochimica et biophysica acta 740:271–281
    [Google Scholar]
  4. COLLINS J. 1981; Instability of palindromic DNA in Escherichia coli. Cold Spring Harbor Symposia on Quantitative Biology 45:409–416
    [Google Scholar]
  5. CUMMINGS P. J., LAKONY R. J., RINALDO C. R. JR 1981; Characterization of herpes simplex virus persistence in a human T lymphoblastoid cell line. Infection and Immunity 34:817–827
    [Google Scholar]
  6. DAUENHAUER S. A., ROBINSON R. A., O’CALLAGHAN D. J. 1982; Chronic production of defective-interfering particles by hamster embryo cultures of herpesvirus persistently infected and oncogenically transformed cells. Journal of General Virology 60:1–14
    [Google Scholar]
  7. DAVISON A. J., MCGEOCH D. I. 1986; Evolutionary comparisons of the S segments in the genomes of herpes simplex virus type 1 and varicella-zoster virus. Journal of General Virology 67:597–611
    [Google Scholar]
  8. DAVISON A. J., SCOTT J. E. 1983; Molecular cloning of the varicella-zoster virus genome and derivation of six restriction endonuclease maps. Journal of General Virology 64:1811–1814
    [Google Scholar]
  9. DAVISON A. J., SCOTT J. E. 1986; The complete DNA sequence of varicella-zoster vims. Journal of General Virology 67:1759–1816
    [Google Scholar]
  10. DEATLY A. M., SPIVACK J. G., LAVI E., FRASER N. W. 1987; RNA from an immediate early region of the type 1 herpes virus genome is present in the trigeminal ganglia of latently infected mice. Proceedings of the National Academy of Sciences, U.S.A 84:3204–3208
    [Google Scholar]
  11. DOHNER D. E., ADAMS S. G., GELB L. D. 1988; Recombination in tissue culture between varicella-zoster virus strains. Journal of Medical Virology 24:329–341
    [Google Scholar]
  12. DOLLER E., AUCKER J., WEISSBACH A. 1979; Persistence of herpes simplex virus type 1 in rat neurotumor cells. Journal of Virology 29:43–50
    [Google Scholar]
  13. DUMAS A. M., GEELEN I. L. M. C, WESTSTRATE M. W., WERTHEIM P., VAN DER NOORDAA J. 1981; XbaI, PstI, and BglII restriction enzyme maps of the two orientations of the varicella-zoster virus genome. Journal of Virology 39:390–400
    [Google Scholar]
  14. ECKER J. R., HYMAN R. W. 1982; Varicella zoster virus DNA exists as two isomers. Proceedings of the National Academy of Sciences, U.S.A 79:156–160
    [Google Scholar]
  15. FARABAUGH P. J., SCHMEISSNER U., HOFER M., MILLER J. H. 1978; Genetic studies of the lac repressor. VII. On the molecular nature of spontaneous hotspots in the lacI gene of Escherichia coli. Journal of Molecular Biology 126:847–863
    [Google Scholar]
  16. FELSER J. M., STRAUS S. E., OSTROVE J. M. 1987; Varicella-zoster virus complements herpes simplex virus type 1 temperature-sensitive mutants. Journal of Virology 61:225–228
    [Google Scholar]
  17. FRENKEL N. 1981 Defective interfering herpesviruses. The Human Herpesviruses-An Interdisciplinary Perspective91–120 Edited by Nahmias A. J., Dowdle W. R., Schinazi R. F. New York: Elsevier;
    [Google Scholar]
  18. GALLOWAY D. A., FENOGLIO C. M., MCDOUGALL J. K. 1982; Limited transcription of the herpes simplex virus genome when latent in human sensory ganglia. Journal of Virology 41:686–691
    [Google Scholar]
  19. GROSE C., BRUNELL P. A. 1978; Varicella-zoster virus: isolation and propagation in human melanoma cells at 36 and 32 °C. Infection and Immunity 19:199–203
    [Google Scholar]
  20. GROSE C., PERROTTA D. M., BRUNELL P. A., SMITH G. C. 1979; Cell-free varicella-zoster virus in cultured human melanoma cells. Journal of General Virology 43:15–27
    [Google Scholar]
  21. HSIUNG G. D., FONG C. K. Y. 1982 In Diagnostic Virology33 New Haven: Yale University Press;
    [Google Scholar]
  22. HUANG A. S., BALTIMORE D. 1977 Defective animal viruses. Comprehensive Virology 1073–116 Edited by Fraenkel-Conrat H., Wagner R. R. New York & London: Plenum Press;
    [Google Scholar]
  23. KNIPE D. M., RUYECHAN W. T., ROIZMAN B., HALLIBURTON I. W. 1978; Molecular genetics of herpes simplex virus: demonstration of regions of obligatory and nonobligatory identity within diploid regions of the genome by sequence replacement and insertion. Proceedings of the National Academy of Sciences, U.S.A 75:3896–3900
    [Google Scholar]
  24. MCGEOCH D. I., DOLAN A., DONALD S., RIXON F. J. 1985; Sequence determination and genetic content of the short unique region in the genome of herpes simplex virus type 1. Journal of Molecular Biology 181:1–13
    [Google Scholar]
  25. MANIATIS T., FRITSCH E. F., SAMBROOK J. 1982 Molecular Cloning: A Laboratory Manual New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  26. MARTIN J. H., DOHNER D. E., WELLINGHOFF W. J., GELB L. D. 1982; Restriction endonuclease analysis of varicella-zoster vaccine virus and wild-type DNAs. Journal of Medical Virology 9:69–76
    [Google Scholar]
  27. MICHALSKI F. J., HSIUNG G. D. 1976; Persistent infection with bovine herpesvirus-1 (infectious bovine rhinotracheitis virus) in cultured hamster cells. In Vitro 12:682–686
    [Google Scholar]
  28. MISHRA L., DOHNER D. E., WELLINGHOFF W. J., GELB L. D. 1984; Physical maps of varicella-zoster virus DNA derived with 11 restriction enzymes. Journal of Virology 50:615–618
    [Google Scholar]
  29. MOCARSKI E. S., STINSKL M. F. 1979; Persistence of the cytomegalovirus genome in human cells. Journal of Virology 31:761–775
    [Google Scholar]
  30. MOCARSKI E. S., DEISS L. P., FRENKEL N. 1985; Nucleotide sequence and structural features of a novel Us-a junction present in a defective herpes simplex virus genome. Journal of Virology 55:140–146
    [Google Scholar]
  31. OGURA T., TANAKA J., KAMIYA S., SATO H., OGURA H., HATANO M. 1986; Human cytomegalovirus persistent infection in a human central nervous system cell line: production of a variant virus with different growth characteristics. Journal of General Virology 67:2605–2616
    [Google Scholar]
  32. PEREZ MARTIN C, VILAS MINONDO P., GARCIA GANCEDO A., PEREZ PRIETO S. I. 1986; Suppression of persistent varicella-zoster virus infection in Vero cells by acyclovir. Acta virologica 30:341–345
    [Google Scholar]
  33. PUGA A., NOTKINS A. L. 1987; Continued expression of a poly(A)+ transcript of herpes simplex virus type 1 in trigeminal ganglia of latently infected mice. Journal of Virology 61:1700–1703
    [Google Scholar]
  34. ROBEY W. G., GRAHAM B. J., HARRIS C. L., MADDEN M. I., PEARSON G. R., VANDE WOUDE G. F. 1976; Persistent herpes simplex virus infections established in two Burkitt lymphoma derived cell lines. Journal of General Virology 32:51–62
    [Google Scholar]
  35. ROCK D. L., HAGEMOSER W. A., OSORIO F. A., REED D. E. 1986; Detection of bovine herpes virus type 1 RNA in trigeminal ganglia of latently infected rabbits by in situ hybridization. Journal of General Virology 67:2515–2520
    [Google Scholar]
  36. RUYECHAN W. T., CASEY T. A., REINHOLD W., WEIR A. C, WELLMAN M., STRAUS S. E., HAY J. 1985; Distribution of G + C-rich regions in varicella-zoster virus DNA. Journal of General Virology 66:43–54
    [Google Scholar]
  37. SCHRÖDER C. H., FÜRST B., WEISE K., GRAY C. P. 1984; A study of interfering herpes simplex virus DNA preparations containing defective genomes of either class I or class II and the identification of minimal requirements for interference. Journal of General Virology 65:493–506
    [Google Scholar]
  38. SOUTHERN E. M. 1979; Gel electrophoresis of restriction fragments. Methods in Enzymology 68:152–176
    [Google Scholar]
  39. STACZEK J., WHARTON J. H., DAUENHAUER S. A., O’CALLAGHAN D. J. 1984; Coestablishment of persistent infection and oncogenic transformation of hamster embryo cells by equine cytomegalovirus. Virology 132:339–351
    [Google Scholar]
  40. STEVENS J. G., WAGNER E. K., DEVI-RAO G. B., COOK M. L., FELDMAN L. T. 1987; RNA complementary to a herpesvirus alpha gene mRNA is prominent in latently infected neurons. Science 235:1056–1059
    [Google Scholar]
  41. STOW N. D., DAVISON A. J. 1986; Identification of a varicella-zoster virus origin of DNA replication and its activation by herpes simplex virus type 1 gene products. Journal of General Virology 67:1613–1623
    [Google Scholar]
  42. STRAUS S. E., AULAKH H. S., RUYECHAN W. T., HAY J., CASEY T. A., VANDE WOUDE G. F., OWENS J., SMITH H. A. 1981; Structure of varicella-zoster virus DNA. Journal of Virology 40:516–525
    [Google Scholar]
  43. STRAUS S. E., OWENS J., RUYECHAN W. T., TARIFF H. E., CASEY T. A., VANDE WOUDE G. F., HAY J. 1982; Molecular cloning and physical mapping of varicella-zoster virus DNA. Proceedings of the National Academy of Sciences, U.S.A 79:993–997
    [Google Scholar]
  44. UMENE K., ENQUIST L. W. 1985; Isolation of novel herpes simplex virus type 1 derivatives with tandem duplications of DNA sequences encoding immediate-early mRNA-5 and an origin of replication. Journal of Virology 53:607–615
    [Google Scholar]
  45. VLAZNY D. A., FRENKEL N. 1981; Replication of herpes simplex virus DNA: localization of replication recognition signals within defective virus genomes. Proceedings of the National Academy of Sciences, U.S.A 78:742–746
    [Google Scholar]
  46. VLAZNY D. A., HYMAN R. W. 1985; Errant processing and structural alterations of genomes present in a varicella-zoster viruso vaccine. Journal of Virology 56:92–101
    [Google Scholar]
  47. WELLER T. H., COONS A. H. 1954; Fluorescent antibody studies with agents of varicella and herpes zoster propagated in vitro. Proceedings of the Society for Experimental Biology and Medicine 86:789–794
    [Google Scholar]
  48. WU C A., HARPER L., BEN-PORAT T. 1986; Molecular basis for interference of defective interfering particles of Pseudorabies virus with replication of standard virus. Journal of Virology 59:308–317
    [Google Scholar]
  49. YOUNGNER J. S., PREBLE O. T. 1980 Viral persistence: evolution of viral populations. Comprehensive Virology 1673–135 Edited by Fraenkel-Conrat H., Wagner R. R. New York & London: Plenum Press;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-69-9-2229
Loading
/content/journal/jgv/10.1099/0022-1317-69-9-2229
Loading

Data & Media loading...

Most cited Most Cited RSS feed