The physicochemical and antigenic properties of three groups of Marburg (MBG) virus isolates, separated temporally and geographically, were compared to each other and to another member of the same family, Ebola (EBO) virus. Each MBG isolate contained seven virion proteins, one of which was a glycosylated surface protein. Peptide mapping of glycoproteins, nucleoproteins (NP) and viral structural protein (VP40) demonstrated extensive sequence conservation in the proteins of viruses isolated over a 13-year period, but homology was not evident in VP24. Some homology between the NPs of MBG and EBO was observed. A close antigenic relationship between MBG strains was found by radioimmunoassay but no evidence was found of antigenic cross-reactivity with EBO viruses. MBG virion proteins are produced from virus-specific monocistronic mRNA species. Five of the seven viral proteins were produced by translation of these RNAs. MBG virions contained one RNA species with an of 4.2 × 10 and virions had a density of 1.14 g/ml in potassium tartrate. Virus isolates from different outbreaks had distinct T oligonucleotide maps, but had approximately 95% homology in base sequence. No two geographically distinct virus pairs were more closely related to each other than to a third virus isolate. MBG viruses are thus similar to EBO viruses in morphology and other physicochemical properties and are very similar to each other in RNA and protein composition. Each of the three geographically and temporally distinct MBG virus outbreaks appears to have been due to a genetically distinguishable, but antigenically closely related virus strain. In addition, these studies confirm the belief that MBG and EBO viruses are members of the new virus family, the .


Article metrics loading...

Loading full text...

Full text loading...


Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error