1887

Abstract

Summary

We have studied the interactions of synthetic peptides corresponding to the sequence of the amino terminus of the HA subunit of influenza virus haemagglutinin with artificial lipid membranes. The peptides could fuse cholesterol-free liposomes at neutral as well as acid pH; however, liposomes containing cholesterol could only be fused below pH 6. The fusion process caused leakage of aqueous liposomal contents. Peptides with amino acid substitutions had fusion properties similar to whole haemagglutinin molecules with the corresponding sequence changes. Non-fusogenic peptides still interacted with the membrane but did not cause leakage of liposomal contents. A correlation between the α-helical content of peptide and its fusogenicity was noted, but this was not absolute. The results reported here support suggestions for a role of the amino terminus of HA in virus-endosome fusion.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-69-8-1847
1988-08-01
2024-12-08
Loading full text...

Full text loading...

/deliver/fulltext/jgv/69/8/JV0690081847.html?itemId=/content/journal/jgv/10.1099/0022-1317-69-8-1847&mimeType=html&fmt=ahah

References

  1. ATHERTON E., SHEPPARD R. C. 1985; Solid phase peptide synthesis using N-fluorenylmethoxycarbonyl amino acid pentafluorophenyl esters. Journal of the Chemical Society, Chemical Communications165–166
    [Google Scholar]
  2. BARELA T. D., SHERRY D. 1976; A simple one-step fluorometric method for determinations of nanomolar concentrations of terbium. Analytical Biochemistry 71:351–357
    [Google Scholar]
  3. BLEWITT M. G., ZHAO I-M., MCKEEVER B., SARMA R., LONDON E. 1984; Fluorescence characterisation of the low pH-induced change in diphtheria toxin conformation: effect of salt. Biochemical and Biophysical Research Communications 120:286–290
    [Google Scholar]
  4. BLEWITT M. G., CHUNG L. A., LONDON E. 1985; Effect of pH on the conformation of diphtheria toxin and its implications for membrane penetration. Biochemistry 24:5458–5464
    [Google Scholar]
  5. BONDESON J., WIJKANDER J., SUNDLER R. 1984; Proton-induced membrane fusion. Role of phospholipid composition and protein mediated intermembrane contact. Biochimica et biophysica acta 777:21–27
    [Google Scholar]
  6. BRUCKDORFER K. R., DEMEL R. A., DE GIER J., VAN DEENEN L. L. M. 1969; The effect of partial replacements of membrane cholesterol by other steroids on the osmotic fragility and glycerol permeability of erythrocytes. Biochimica et biophysica acta 183:334–345
    [Google Scholar]
  7. CABIAUX V., VANDENBRANDEN M., FALMAGNE P., RUYSSCHAERT J.-M. 1984; Diphtheria toxin induces fusion of small unilamellar vesicles at low pH. Biochimica et biophysica acta 775:31–36
    [Google Scholar]
  8. CABIAUX V., LARGE P., VANDENBRANDEN M., FALMAGNE P., RUYSSCHAERT J.-M. 1985; Tetanus toxin induces fusion and aggregation of lipid vesicles containing phosphatidylinositol at low pH. Biochemical and Biophysical Research Communications 128:840–849
    [Google Scholar]
  9. DANIELS R. S., DOUGLAS A. R., SKEHEL J. J., WATERFIELD M. D., WILSON I. A., WILEY D. C. 1983a Studies of the influenza virus hemagglutinin in the pH 5 conformation. The Origin of Pandemic Influenza Viruses1–7 Edited by Laver W. G. New York: Elsevier;
    [Google Scholar]
  10. DANIELS R. S., DOUGLAS A. R., GONSALES-SCARANO F., PALU G., SKEHEL J. J., BROWN E., KNOSSOW M., WILSON I. A., WILEY D. C. 1983b Antigenic structure of influenza virus hemagglutinin. The Origin of Pandemic Influenza Viruses9–18 Edited by Laver W. G. New York: Elsevier;
    [Google Scholar]
  11. DANIELS R. S., DOWNIE J. C, HAY A. J., KNOSSOW M., SKEHEL I. J., WANG M. L., WILEY D. C. 1985; Fusion mutants of the influenza virus hemagglutinin glycoprotein. Cell 40:431–439
    [Google Scholar]
  12. DOMS R. W., HELENLUS A., WHITE J. 1985; Membrane fusion activity of the influenza virus hemagglutinin. Journal of Biological Chemistry 260:2973–2981
    [Google Scholar]
  13. DUZGUNES N., GAMBALE F. 1988; Membrane action of synthetic N-terminal peptides of influenza virus haemagglutinin and its mutants. FEBS Letters 227:110–114
    [Google Scholar]
  14. ELLENS H., BENTZ J., SZOKA F. C. 1985; H+ and Ca2+ induced fusion and déstabilisation of liposomes. Biochemistry 24:3099–3106
    [Google Scholar]
  15. GARTEN W., BOSCH F. X., LINDER D., ROTT R., KLENK H.-D. 1981; Proteolytic activation of the influenza virus hemagglutinin: the structure of the cleavage site and the enzymes involved in cleavage. Virology 115:361–374
    [Google Scholar]
  16. GETHING M.-J., DOMS R. W., YORK D., WHITE I. 1986; Studies on the mechanism of membrane fusion: site specific mutagenesis of the hemagglutinin of influenza virus. Journal of Cell Biology 102:11–23
    [Google Scholar]
  17. GRATZER W. B., DOTY P. 1963; A conformation examination of poly-l-alanine and poly-d,l-alanine in aqueous solution. Journal of the American Chemical Society 85:1193–1197
    [Google Scholar]
  18. GREEN C. 1977; Sterols in cell membranes and model membrane systems. International Reviews of Biochemistry 14:101–152
    [Google Scholar]
  19. LEAR J. D., DE GRADO W. F. 1987; Membrane binding and conformational properties of peptide representing the amino terminus of influenza virus HA2. Journal of Biological Chemistry 262:6500–6505
    [Google Scholar]
  20. MORGAN C. G., WILLIAMSON H., FULLER S., HUDSON B. 1983; Melittin induces fusion of unilamellar phospholipid vesicles. Biochimica et biophysica acta 732:668–674
    [Google Scholar]
  21. MURATA M., SUGAHARA Y., TAKAHASHI S., OHNISHI S-I. 1987; pH-dependent membrane fusion activity of a synthetic twenty amino acid peptide with the same sequence as that of the hydrophobic segment of influenza virus hemagglutinin. Journal of Biochemistry 102:957–962
    [Google Scholar]
  22. PATTUS F., CAVARD D., CROZEL V., BATY D., ADRIAN M., LARZDUNSKI C. 1985; pH-dependent membrane fusion is promoted by various colicins. EMBO Journal 4:2469–2474
    [Google Scholar]
  23. RUIGROK R. W. H., MARTIN S. R., WHARTON S. A., SKEHEL J. J., BAYLEY P. M., WILEY D. C. 1986; Conformational changes in the hemagglutinin of influenza virus which accompany heat-induced fusion of virus with liposomes. Virology 155:484–497
    [Google Scholar]
  24. SCHLEGEL R., WADE M. 1985; Biologically active peptides of vesicular stomatitis virus glycoprotein. Journal of Virology 53:319–323
    [Google Scholar]
  25. SKEHEL J. J., BAYLEY P. M., BROWN E. B., MARTIN S. R., WATERFIELD M. D., WHITE J. M., WILSON I. A., WILEY D. C. 1982; Changes in the conformation of influenza virus hemagglutinin at the pH optimum of virus-mediated membrane fusion. Proceedings of the National Academy of Sciences, U.S.A 79:968–972
    [Google Scholar]
  26. SUBBARO N. K., PARENTE R. A., SZOKA F. C, NADASDI L., PONGRACZ K. 1987; pH-dependent bilayer destabilization by an amphipathic peptide. Biochemistry 26:2964–2972
    [Google Scholar]
  27. USTER P. S., DEAMER D. W. 1985; pH-dependent fusion of liposomes using titratable polycations. Biochemistry 24:1–8
    [Google Scholar]
  28. WHARTON S. A. 1987; The role of influenza virus haemagglutinin in membrane fusion. Microbiological Sciences 4:119–124
    [Google Scholar]
  29. WHARTON S. A., DE MARTINEZ S. G., GREEN C. 1980; Use of fluorescent probes in the study of phospholipid-sterol bilayers. Biochemical Journal 191:785–790
    [Google Scholar]
  30. WHARTON S. A., SKEHEL J. J., WILEY D. C. 1986; Studies of influenza hemagglutinin-mediated membrane fusion. Virology 149:27–35
    [Google Scholar]
  31. WHITE J., KIELIAN M., HELENLUS A. 1983; Membrane fusion proteins of enveloped animal viruses. Quarterly Reviews of Biophysics 16:151–195
    [Google Scholar]
  32. WILSCHUT J., PAPAHADJOPOULOS D. 1979; Ca2+-induced fusion of phospholipid vesicles monitored by mixing of aqueous contents. Nature, London 281:690–692
    [Google Scholar]
  33. WILSON I. A., SKEHEL J. I., WILEY D. C. 1981; Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 Â resolution. Nature, London 289:366–373
    [Google Scholar]
  34. WOODGETT C., ROSE J. K. 1986; Amino-terminal mutation of the vesicular stomatitis virus glycoprotein does not affect its fusion activity. Journal of Virology 59:486–489
    [Google Scholar]
/content/journal/jgv/10.1099/0022-1317-69-8-1847
Loading
/content/journal/jgv/10.1099/0022-1317-69-8-1847
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error