Comparative analysis of the structural and possible non-structural proteins of seven Simbu serogroup bunyaviruses isolated in Australia revealed them all to be similar in size to those of Bunyamwera virus, the prototype of the genus. The molecular weights of the structural proteins for these bunyaviruses (Akabane, Aino, Tinaroo, Douglas, Peaton, Facey's Paddock and Thimiri viruses) were 193K to 205K (L), 103K to 125K (G1), 33K to 37K (G2) and 25K to 26K (N). Analysis of the virion RNA of three viruses (Akabane, Douglas and Facey's Paddock) showed them all to be similar to Bunyamwera virus RNA, apparent values being 2·6 × 10 (L), 1·4 × 10 to 1·9 × 10 (M) and 0·24 × 10 to 0·42 × 10 (S). Host cell protein synthesis was switched off late during infection, revealing four structural proteins L, G1, G2 and N. Comparative analysis of these protein profiles in infected Vero cells showed each virus, although similar, to be unique and easily identified; this method of comparison was efficient and rapid compared to the difficulty in obtaining adequate amounts of purified virus for analysis. Additionally, for all viruses except Douglas, two to four possible non-structural proteins were identified, with an range from 12K to 30K. The viruses Akabane and Tinaroo, which have previously been shown to cross-react by plaque inhibition virus neutralization tests, were readily distinguished in migration of the G1 glycoprotein and by analysis of plaque reduction virus neutralization data using linear regression analysis of the dose—response curves. Using these same analyses, the differences between Aino and Douglas viruses, also related by plaque inhibition, were even greater. Application of the biochemical analysis of virus-specified proteins and some serological comparisons identified a mixed pool of different viruses in two unknown isolates grouped as Simbu serogroup viruses, and further identified a potential teratogenic strain in one of the two pools.


Article metrics loading...

Loading full text...

Full text loading...


Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error