Monoclonal Antibodies to the E1 and E2 Glycoproteins of Sindbis Virus: Definition of Epitopes and Efficiency of Protection from Fatal Encephalitis Free

Abstract

Summary

Protection of mice from fatal neuroadapted Sindbis virus encephalitis can be accomplished by passive transfer of monoclonal antibodies (MAbs) to either the E1 or E2 glycoprotein of Sindbis virus. Both neutralizing and non-neutralizing MAbs can be protective. To define further the characteristics of MAbs that provide protection from fatal disease, antigenic epitopes on the E1 and E2 glycoproteins were identified using a competitive binding enzyme immunoassay. Four distinct epitopes on E1 and three on E2 were defined. MAbs to all E1 epitopes, both neutralizing (three) and non-neutralizing (one) protected mice from fatal encephalitis. MAbs to the E2 neutralizing epitopes (two) protected mice from fatal encephalitis while those to the non-neutralizing epitope did not. The efficiency of protection from fatal Sindbis virus encephalitis of four neutralizing and non-neutralizing protective anti-E1 and anti-E2 MAbs representing different epitopes was compared. The neutralizing MAbs (against epitopes E2-ab, E2-c and E1-c) gave 50% protection at lower doses (2 to 20 µg) than the non-neutralizing MAb representing epitope E1-e (150 µg) when given before virus challenge. When given after virus challenge, MAbs to E2-ab and E2-c protected at lower doses (0.03 to 0.3 µg) than did either MAbs to E1-c (> 100 µg) or E1-e (10 µg). The MAbs to E1-e, E2-ab and E2-c were required in larger amounts to afford protection before than after challenge, while the opposite was true for MAb to E1-c.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-69-12-3015
1988-12-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/69/12/JV0690123015.html?itemId=/content/journal/jgv/10.1099/0022-1317-69-12-3015&mimeType=html&fmt=ahah

References

  1. BELL J. R., STRAUSS E. G., STRAUSS J. H. 1979; Purification and amino acid compositions of the structural proteins of Sindbis virus. Virology 97:287–294
    [Google Scholar]
  2. BELL J. R., KINNEY R. M., TRENT D. W., STRAUSS E. G., STRAUSS J. H. 1984; An evolutionary tree relating eight alpha viruses, based on amino-terminal sequences of their glycoproteins. Proceedings of the National Academy: of Sciences, U.S.A 81:4702–4706
    [Google Scholar]
  3. BOERE W. A. M., BENAISSA-TROUW B. J., HARMSEN M., KRAAUEVELD C. A., SNIPPE H. 1983; Neutralizing and non-neutralizing monoclonal antibodies to the E2 glycoprotein of Semliki Forest virus can protect mice from lethal encephalitis. Journal of General Virology 64:1405–1408
    [Google Scholar]
  4. BOERE W. A. M., HARMSEN T., VINJE J., BENAISSA-TROUW B. J., KRAAUEVELD C. A., SNIPPE H. 1984; Identification of distinct antigenic determinants on Semliki Forest virus by using monoclonal antibodies with different antiviral activities. Journal of Virology 52:575–582
    [Google Scholar]
  5. BOERE W. A. M., BENAISSA-TROUW B. J., HARMSEN T., ERICH T., KRAAUEVELD C. A., SNIPPE H. 1985; Mechanisms of monoclonal antibody-mediated protection against virulent Semliki Forest virus. Journal of Virology 54:546–551
    [Google Scholar]
  6. BOERE W. A. M., BENAISSA-TROUW B. J., HARMSEN T., ERICH T., KRAAUEVELD C. A., SNIPPE H. 1986; The role of complement in monoclonal antibody-mediated protection against virulent Semliki Forest virus. Immunology 58:553–559
    [Google Scholar]
  7. DALRYMPLE J. M., SCHLESINGER S., RUSSELL P. K. 1976; Antigenic characterization of two Sindbis envelope glycoproteins separated by isoelectric focusing. Virology 69:93–103
    [Google Scholar]
  8. DAVIS N. L., PENCE D. F., MEYER W. J., SCHMALJOHN A. L., JOHNSTON R. E. 1987; Alternative forms of a strain specific neutralizing antigenic site on the Sindbis virus E2 glycoprotein. Virology 161:101–108
    [Google Scholar]
  9. GRIFFIN D. E. 1986 Alphavirus pathogenesis and immunity. The Viruses: The Togaviridàe and Flaviviridae209–249 Edited by Schlesinger M. J., Schlesinger S. New York: Plenum Press;
    [Google Scholar]
  10. GRIFFIN D. E., JOHNSON R. T. 1977; Role of the immune response in recovery from Sindbis virus encephalitis in mice. Journal of Immunology 118:1070–1075
    [Google Scholar]
  11. HIRSCH R. L., GRIFFIN D. E., JOHNSON R. T. 1979; Interactions between immune cells and antibody in protection from fatal Sindbis virus encephalitis. Infection and Immunity 23:320–324
    [Google Scholar]
  12. HUNT A. R., ROEHRIG J. T. 1985; Biochemical and biological characteristics of epitopes on the E1 glycoprotein of Western equine encephalitis virus. Virology 142:334–346
    [Google Scholar]
  13. LEARY J. J., BRIGATI D. J., WARD D. C. 1983; Bio-blots: rapid and sensitive colorimetric method for visualizing biotin-labeled DNA probes hybridized to DNA or RNA immobilized on nitrocellulose. Proceedings of the National Academy of Sciences, U.S.A 80:4045–4049
    [Google Scholar]
  14. LEFRANCOIS L. 1984; Protection against lethal viral infection by neutralizing and non-neutralizing monoclonal antibodies: distinct mechanisms of action. in vivo. Journal of Virology 51:208–214
    [Google Scholar]
  15. LUSTIG S., JACKSON A. C, HAHN C. S., GRIFFIN D. E., STRAUSS E. G., STRAUSS J. H. 1988; The molecular basis of Sindbis virus neurovirulence in mice. Journal of Virology 62:2329–2336
    [Google Scholar]
  16. MACFARLAN R. I., BURNS W. H., WHITE D. 1977; Two cytotoxic cells in peritoneal cavity of virus-infected mice: antibody dependent macrophages and non-specific killer cells. Journal of Immunology 119:1569–1574
    [Google Scholar]
  17. MATHEWS J. H., ROEHRIG J. T. 1982; Determination of the protective epitopes on the glycoproteins of Venezuelan equine encephalomyelitis virus by passive transfer of monoclonal antibodies. Journal of Immunology 129:2763–2767
    [Google Scholar]
  18. MATHEWS J. H., ROEHRIG J. T., TRENT D. W. 1985; Role of complement and the Fc portion of immunoglobulin G in immunity to Venezuelan equine encephalomyelitis virus infection with glycoprotein-specific monoclonal antibodies. Journal of Virology 55:594–600
    [Google Scholar]
  19. NAKANAGA K., YAMANOUCHI K., FUJIWARA K. 1986; Protective effect of monoclonal antibodies on lethal mouse hepatitis virus infection in mice. Journal of Virology 59:168–171
    [Google Scholar]
  20. OI V. T., HERZENBERG L. A. 1980 Immunoglobulin-producing hybrid cell lines. Selected Methods in Cellular Immunology351–372 Edited by Mishell B. B., Shiigi S. M. San Francisco: W. H. Freeman and Co;
    [Google Scholar]
  21. OLMSTED R. A., MEYER W. J., JOHNSTON R. E. 1986; Characterization of Sindbis virus epitopes important for penetration in cell culture and pathogenesis in animals. Virology 148:245–254
    [Google Scholar]
  22. PEDERSEN C. E. JR, EDDY G. A. 1974; Separation, isolation, and immunological studies of the structural proteins of Venezuelan equine encephalomyelitis virus. Journal of Virology 14:740–744
    [Google Scholar]
  23. RICE C. M., STRAUSS J. H. 1981; Nucleotide sequence of the 26S mRNA of Sindbis virus and deduced sequence of the encoded virus structural proteins. Proceedings of the National Academy of Sciences, U.S.A 78:2062–2066
    [Google Scholar]
  24. ROEHRIG J. T., MATHEWS J. H. 1985; The neutralization site on the E2 glycoprotein of Venezuelan equine encephalomyelitis (TC-83) virus is composed of multiple conformationally stable epitopes. Virology 142:347–356
    [Google Scholar]
  25. ROEHRIG J. T., CORSER J. A., SCHLESINGER M. J. 1980; Isolation and characterization of hybrid cell lines producing monoclonal antibodies directed against the structural proteins of Sindbis virus. Virology 101:41–49
    [Google Scholar]
  26. ROEHRIG J. T., DAY J. W., MATHEWS J. H. 1982; Antigenic analysis of the surface glycoproteins of a Venezuelan equine encephalomyelitis virus (TC-83) using monoclonal antibodies. Virology 118:269–278
    [Google Scholar]
  27. SCHMALJOHN A. L., JOHNSON E. D., DALRYMPLE J. M., COLE G. A. 1982; Non-neutralizing monoclonal antibodies can prevent lethal alphavirus encephalitis. Nature, London 297:70–72
    [Google Scholar]
  28. SCHMALJOHN A. L., KOKUBUN K. M., COLE G. A. 1983; Protective monoclonal antibodies define maturational and pH-dependent antigenic changes in Sindbis virus E1 glycoprotein. Virology 130:144–154
    [Google Scholar]
  29. SISSONS J. G. P., OLDSTONE M. B. A. 1980; Antibody-mediated destruction of virus-infected cells. Advances in Immunology 29:209–260
    [Google Scholar]
  30. STANLEY J., COOPER S. J., GRIFFIN D. E. 1985; Alphavirus neurovirulence: monoclonal antibodies distinguishing neuroadapted from wild-type Sindbis virus. Journal of Virology 56:110–119
    [Google Scholar]
  31. STANLEY J., COOPER S. J., GRIFFIN D. E. 1986; Monoclonal antibody cure and prophylaxis of lethal Sindbis virus encephalitis in mice. Journal of Virology 58:107–115
    [Google Scholar]
  32. STEC D. S., WADDELL A., SCHMALIOHN C. S., COLE G. A., SCHMALIOHN A. L. 1986; Antibody-selected variation and reversion in Sindbis virus neutralization epitopes. Journal of Virology 57:715–720
    [Google Scholar]
  33. STRAUSS E. G., RICE C. M., STRAUSS J. H. 1984; Complete nucleotide sequence of the genomic RNA of Sindbis virus. Virology 133:92–110
    [Google Scholar]
  34. STRAUSS E. G., SCHMALJOHN A. L., GRIFFIN D. E., STRAUSS J. H. 1987 The structure-function relationships in the glycoproteins of alphaviruses. Positive Strand RNA Viruses365–378 Edited by Brinton M., Rueckert R. New York: Alan R. Liss;
    [Google Scholar]
  35. ZICHIS J., SHAUGHNESSY H. J. 1940; Experimental Western equine encephalomyelitis: successful treatment with hyperimmune rabbit serum. Journal of the American Medical Association 115:1071–1078
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-69-12-3015
Loading
/content/journal/jgv/10.1099/0022-1317-69-12-3015
Loading

Data & Media loading...

Most cited Most Cited RSS feed