The DNA Sequences of the Long Repeat Region and Adjoining Parts of the Long Unique Region in the Genome of Herpes Simplex Virus Type 1 Free

Abstract

Summary

We have determined the DNA sequence of the long repeat region (R) in the genome of herpes simplex virus type 1 (HSV-1) strain 17, as 9215 bp of composition 71.6% G + C. In addition, the sequences of parts of the long unique region (U) adjacent to the terminal (TR) and internal (IR) copies of R were determined (2611 and 3836 bp, respectively). Gene organization in these regions of U was deduced from the sequences and other available data. It was proposed that the region of U sequenced, adjacent to TR, contains three complete genes, none with significant previous characterization, and that the region of U adjacent to IR also contains three genes, one encoding the immediate early protein IE63. The R sequence contains one well characterized gene, for the protein IE110, whose organization we have described previously. Between the downstream end of the IE110 gene and U there is a 3500 bp segment of R in which we did not find convincing protein-coding sequences, and which thus remains of obscure functionality. Upstream of the IE110 gene is a region previously proposed by others to contain a gene. However, our sequence data are not compatible with their interpretation. We do consider it possible that the region is protein-coding, but regard gene organization here as still unresolved.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-69-11-2831
1988-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/69/11/JV0690112831.html?itemId=/content/journal/jgv/10.1099/0022-1317-69-11-2831&mimeType=html&fmt=ahah

References

  1. ACKERMANN M., CHOU J., SARMIENTO M., LERNER R. A., ROIZMAN B. 1986; Identification by antibody to a synthetic peptide of a protein specified by a diploid gene located in the terminal repeats of the L component of herpes simplex virus genome. Journal of Virology 58:843–850
    [Google Scholar]
  2. BAER R., BANKIER A. T., BIGGIN M. D., DEININGER P. L., FARRELL P. J., GIBSON T. J., HATFULL G., HUDSON G. S., SATCHWELL S. C, SEGUIN C, TUFFNELL P. S., BARRELL B. G. 1984; DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature, London 310:207–211
    [Google Scholar]
  3. BEN-HUR T., ROSEN-WOLFF A., LAMADE W., DARAI G., BECKER Y. 1988; HSV-1 DNA sequence determining intraperitoneal pathogenicity in mice is required for transcription of viral immediate-early genes in macrophages. Virology 163:397–404
    [Google Scholar]
  4. BERG J. M. 1986; Potential metal-binding domains in nucleic acid binding proteins. Science 232:485–487
    [Google Scholar]
  5. BIGGIN M. D., GIBSON T. J., HONG G. F. 1983; Buffer gradient gels and 35S label as an aid to rapid DNA sequence determination. Proceedings of the National Academy of Sciences, U.S.A 80:3963–3965
    [Google Scholar]
  6. BZIK D. J., FOX B. A., DELUCA N. A., PERSON S. 1984; Nucleotide sequence specifying the glycoprotein gene, gB, of herpes simplex virus type 1. Virology 133:301–314
    [Google Scholar]
  7. CARADONNA S., WORRAD D., LIRETTE R. 1987; Isolation of a herpes simplex virus cDNA encoding the DNA repair enzyme uracil-DNA glycosylase. Journal of Virology 61:3040–3047
    [Google Scholar]
  8. CHOU J., ROIZMAN B. 1986; The terminal a sequence of the herpes simplex virus genome contains the promoter of a gene located in the repeat sequences of the L component. Journal of Virology 57:629–637
    [Google Scholar]
  9. DAVISON A. J., SCOTT J. E. 1986; The complete DNA sequence of varicella-zoster virus. Journal of General Virology 67:1759–1816
    [Google Scholar]
  10. DAVISON A. J., TAYLOR P. 1987; Genetic relations between varicella-zoster virus and Epstein-Barr virus. Journal of General Virology 68:1067–1079
    [Google Scholar]
  11. DAVISON A. J., WILKIE N. M. 1981; Nucleotide sequences of the joint between the L and S segments of herpes simplex virus types 1 and. 2. Journal of General Virology 55:315–331
    [Google Scholar]
  12. DEBROY C, PEDERSON N., PERSON S. 1985; Nucleotide sequence of a herpes simplex virus type 1 gene that causes cell fusion. Virology 145:36–48
    [Google Scholar]
  13. DEININGER P. L. 1983; Random subcloning of sonicated DNA: application to shotgun DNA sequence analysis. Analytical Biochemistry 129:216–223
    [Google Scholar]
  14. DELUCA N. A., SCHAFFER P. A. 1988; Physical and functional domains of the herpes simplex virus transcriptional regulatory protein ICP4. Journal of Virology 62:732–743
    [Google Scholar]
  15. EVERETT R. D. 1986; The products of herpes simplex virus type 1 (HSV-1) immediate early genes 1, 2 and 3 can activate HSV-1 gene expression in. trans. Journal of General Virology 67:2507–2513
    [Google Scholar]
  16. HAY R. T., HAY J. 1980; Properties of herpesvirus-induced “immediate early” polypeptides. Virology 140:230–234
    [Google Scholar]
  17. KOCH H.-G., ROSEN A., ERNST F., BECKER Y., DARAL G. 1987; Determination of the nucleotide sequence flanking the deletion (0.762 to 0.789 map units) in the genome of an intraperitoneally avirulent HSV-1 strain HFEM. Virus Research 7:105–115
    [Google Scholar]
  18. LIEBERMAN P. M., O’HARE P., HAYWARD G. S., HAYWARD S. D. 1986; Promiscuous trans activation of gene expression by an Epstein-Barr virus-encoded early nuclear protein. Journal of Virology 60:140–148
    [Google Scholar]
  19. LITTLE S. P., SCHAFFER P. A. 1981; Expression of the syncytial (syn) phenotype in HSV-1, strain KOS: genetic and phenotype studies of mutants in two syn loci. Virology 112:686–702
    [Google Scholar]
  20. MCGEOCH D. J., DOLAN A., DONALD S., RIXON F. J. 1985; Sequence determination and genetic content of the short unique region in the genome of herpes simplex virus type 1. Journal of Molecular Biology 181:1–13
    [Google Scholar]
  21. MCGEOCH D. J., DOLAN A., DONALD S., BRAUER D. H. K. 1986; Complete DNA sequence of the short repeat region in the genome of herpes simplex virus type 1. Nucleic Acids Research 14:1727–1745
    [Google Scholar]
  22. MCGEOCH D. J., DALRYMPLE M. A., DAVISON A. J., DOLAN A., FRAME M. C, MCNAB D., PERRY L. J., SCOTT J. E., TAYLOR P. 1988a; The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. Journal of General Virology 69:1531–1574
    [Google Scholar]
  23. MCGEOCH D. J., DALRYMPLE M. A., DOLAN A., MCNAB D., PERRY L. J., TAYLOR P., CHALLBERG M. D. 1988b; Structures of herpes simplex virus type 1 genes required for replication of virus DNA. Journal of Virology 62:444–453
    [Google Scholar]
  24. MACLEAN A. R., BROWN S. M. 1987; A herpes simplex virus type 1 variant which fails to synthesize immediate early polypeptide Vmw IE63. Journal of General Virology 68:1339–1350
    [Google Scholar]
  25. MARSDEN H. S., STOW N. D., PRESTON V. G., TIMBURY M. C., WILKIE N. M. 1978; Physical mapping of herpes simplex virus-induced polypeptides. Journal of Virology 28:624–642
    [Google Scholar]
  26. MESSING J., VIEIRA J. 1982; A new pair of M13 vectors for selecting either strand of double-digest restriction fragments. Gene 19:269–276
    [Google Scholar]
  27. MURCHIE M.-J., MCGEOCH D. J. 1982; DNA sequence analysis of an immediate-early gene region of the herpes simplex virus type 1 genome (map coordinates 0·950 to 0·978). Journal of General Virology 62:1–15
    [Google Scholar]
  28. PEREIRA L., WOLFF M. H., FENWICK M., ROIZMAN B. 1977; Regulation of herpesvirus macromolecular synthesis. V. Properties of α polypeptides made in HSV-1 and HSV-2 infected cells. Virology 77:733–749
    [Google Scholar]
  29. PERRY L. J., RIXON F. J., EVERETT R. D., FRAME M. C., MCGEOCH D. J. 1986; Characterization of the IE110 gene of herpes simplex virus type 1. Journal of General Virology 67:2365–2380
    [Google Scholar]
  30. POGUE-GEILE K. L., SPEAR P. G. 1987; The single base pair substitution responsible for the syn phenotype of herpes simplex virus type 1, strain MP. Virology 157:67–74
    [Google Scholar]
  31. RIXON F. J., CLEMENTS J. B. 1982; Detailed structural analysis of two spliced HSV-1 immediate-early mRNAs. Nucleic Acids Research 10:2241–2256
    [Google Scholar]
  32. ROCK D. L., NESBURN A. B., GHIASI H., ONG J., LEWIS T. L., LOKENSGARD J. R., WECHSLER S. L. 1987; Detection of latency-related viral RNAs in trigeminal ganglia of rabbits latently infected with herpes simplex virus type 1. Journal of Virology 61:3820–3826
    [Google Scholar]
  33. ROIZMAN B. 1979; The structure and isomerization of herpes simplex virus genomes. Cell 16:481–494
    [Google Scholar]
  34. SACKS W. R., GREENE C. C, ASCHMAN D. P., SCHAFFER P. A. 1985; Herpes simplex virus type 1 ICP27 is an essential regulatory protein. Journal of Virology 55:796–805
    [Google Scholar]
  35. SANGER F., NICKLEN S., COULSON A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, U.S.A 74:5463–5467
    [Google Scholar]
  36. SANGER F., COULSON A. R., BARRELL B. G., SMITH A. J. H., ROE B. A. 1980; Cloning in single-stranded bacteriophage as an aid to rapid DNA sequencing. Journal of Molecular Biology 143:161–178
    [Google Scholar]
  37. SPIVACK J. G., FRASER N. W. 1987; Detection of herpes simplex virus type 1 transcripts during latent infection in mice. Journal of Virology 61:3841–3847
    [Google Scholar]
  38. STADEN R. 1982; Automation of the computer handling of gel reading data produced by the shotgun method of DNA sequencing. Nucleic Acids Research 10:4731–4751
    [Google Scholar]
  39. STADEN R., MCLACHLAN A. D. 1982; Codon preference and its use in identifying protein coding regions in long DNA sequences. Nucleic Acids Research 10:141–156
    [Google Scholar]
  40. STEVENS J. G., WAGNER E. K., DEVI-RAO G. B., COOK M. L., FELDMAN L. T. 1987; RNA complementary to a herpesvirus alpha mRNA is prominent in latently infected neurons. Science 235:1056–1059
    [Google Scholar]
  41. TAYLOR P. 1984; A fast homology program for aligning biological sequences. Nucleic Acids Research 12:447–456
    [Google Scholar]
  42. TAYLOR P. 1986; A computer program for translating DNA sequences into protein. Nucleic Acids Research 14:437–441
    [Google Scholar]
  43. WAGNER E. K., DEVI-RAO G., FELDMAN L. T., DOBSON A. T., ZHANG Y-F., FLANAGAN W. M., STEVENS J. G. 1988; Physical characterization of the herpes simplex virus latency-associated transcript in neurons. Journal of Virology 62:1194–1202
    [Google Scholar]
  44. WATSON R. J., PRESTON C. M., CLEMENTS J. B. 1979; Separation and characterization of herpes simplex virus type 1 immediate-early mRNAs. Journal of Virology 31:42–52
    [Google Scholar]
  45. WHITTON J. L., RIXON F. J., EASTON A. J., CLEMENTS J. B. 1983; Immediate-early mRNA-2 of herpes simplex viruses types 1 and 2 is unspliced: conserved sequences around the 5′ and 3′ termini correspond to transcription regulatory signals. Nucleic Acids Research 11:6271–6287
    [Google Scholar]
  46. WONG K-M., LEVINE A. J. 1986; Identification and mapping of Epstein-Barr virus early antigens and demonstration of a viral gene activator that functions in. trans. Journal of Virology 60:149–156
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-69-11-2831
Loading
/content/journal/jgv/10.1099/0022-1317-69-11-2831
Loading

Data & Media loading...

Most cited Most Cited RSS feed