1887

Abstract

Summary

At the pH required to trigger the membrane fusion activity of the influenza virus haemagglutinin (HA) the soluble ectodomain of the molecule, BHA, which is released from virus by bromelain digestion, aggregates into rosettes. Analyses of soluble proteolytic fragments derived from the rosettes indicated that aggregation is mediated by association of the conserved hydrophobic amino-terminal region of BHA, the smaller glycopolypeptide component of each BHA subunit. Further analyses of the structure of the soluble fragments and of HA in its low pH conformation by electron microscopy, spectroscopy and in crosslinking experiments showed that, although the membrane distal globular domains lose their trimer structure at the pH of fusion, the central fibrous stem of the molecule remains trimeric and assumes a more stable conformation. The increase in length of BHA at low pH observed microscopically appears to result from movement of the amino-terminal region to the membrane proximal end of the molecule and in virus incubated at low pH the amino terminus may insert into the virus membrane. The consequences of these possibilities for the mechanism of membrane fusion are discussed.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-69-11-2785
1988-11-01
2024-11-07
Loading full text...

Full text loading...

/deliver/fulltext/jgv/69/11/JV0690112785.html?itemId=/content/journal/jgv/10.1099/0022-1317-69-11-2785&mimeType=html&fmt=ahah

References

  1. BOOY F. P., RUIGROK R. W. H., VAN BRUGGEN E. F. J. 1985; Electron microscopy of influenza virus. A comparison of negatively stained and ice-embedded particles. Journal of Molecular Biology 184:667–676
    [Google Scholar]
  2. BRAND C. M., SKEHEL J. J. 1972; Crystalline antigen from the influenza virus envelope. Nature New Biology 238:145–147
    [Google Scholar]
  3. DANIELS R. S., DOUGLAS A. R., SKEHEL J. J., WATERFIELD M. D., WILSON I. A., WILEY D. C. 1983 Studies of the influenza virus hemagglutinin in the pH5 conformation. The Origin of Pandemic Influenza Viruses1–7 Edited by Laver W. G. Amsterdam: Elsevier;
    [Google Scholar]
  4. DANIELS R. S., DOWNIE J. C, HAY A. J., KNOSSOW M., SKEHEL J. J., WANG M. L., WILEY D. C. 1985; Fusion mutants of the influenza virus hemagglutinin glycoprotein. Cell 40:431–439
    [Google Scholar]
  5. DA VIES G. E., STARK G. R. 1970; Use of dimethyl suberimidate, a cross-linking reagent, in studying the subunit structure of oligomeric proteins. Proceedings of the National Academy of Sciences, U.S.A 66:651–656
    [Google Scholar]
  6. DOMS R. W., HELENIUS A. 1986; Quaternary structure of influenza virus hemagglutinin after acid treatment. Journal of Virology 60:833–839
    [Google Scholar]
  7. DOMS R. W., HELENIUS A., WHITE J. 1985; Membrane fusion activity of the influenza virus hemagglutinin. Journal of Biological Chemistry 260:2973–2981
    [Google Scholar]
  8. GETHING M. J., DOMS R. W., YORK D., WHITE J. 1986; Studies on the mechanism of membrane fusion: site-specific mutagenesis of the hemagglutinin of influenza virus. Journal of Cellular Biology 102:11–23
    [Google Scholar]
  9. KLENK H.-D., ROTT R., ORLICH M., BLODORN J. 1975; Activation of influenza A viruses by trypsin treatment. Virology 68:426–439
    [Google Scholar]
  10. LAZAROWITZ S. G., CHOPPIN P. W. 1975; Enhancement of the infectivity of influenza A and B viruses by proteolytic cleavage of the hemagglutinin polypeptide. Virology 68:440–454
    [Google Scholar]
  11. LEAR J. D., DEGRADO W. F. 1987; Membrane binding and conformational properties of peptides representing the amino-terminus of influenza HA2. Journal of Biological Chemistry 262:6500–6505
    [Google Scholar]
  12. MAEDA T., KAWASAKI K., OHNISHI S. I. 1981; Interaction of influenza virus hemagglutinin with target membrane lipids is a key step in virus-induced haemolysis and fusion at pH = 5-2. Proceedings of the National Academy of Sciences, U.S.A 78:4133–4137
    [Google Scholar]
  13. MATSUBARA H. 1970; Purification and assay of thermolysin. Methods in Enzymology 19:648–651
    [Google Scholar]
  14. NESTOROWICZ A., LAVER G., JACKSON D. C. 1985; Antigenic determinants of influenza virus haemagglutinin. X. A comparison of the physical and antigenic properties of monomeric and trimeric forms. Journal of General Virology 66:1687–1695
    [Google Scholar]
  15. PROVENCHER S. W., GLOCKNER J. 1981; Estimation of globular protein secondary structure from circular dichroism. Biochemistry 20:33–37
    [Google Scholar]
  16. RUIGROK R. W. H., MARTIN S. R., WHARTON S. A., SKEHEL J. J., BAYLEY P. M., WILEY D. C. 1986a; Conformational changes in the hemagglutinin of influenza virus which accompany heat-induced fusion of virus with liposomes. Virology 155:484–497
    [Google Scholar]
  17. RUIGROK R. W. H., WRIGLEY N. G., CALDER L. J., CUSACK S., WHARTON S. A., BROWN E. B., SKEHEL J. J. 1986b; Electron microscopy of the low pH structure of influenza virus haemagglutinin. EMBO Journal 5:41–49
    [Google Scholar]
  18. SKEHEL J. J., SCHILD G. C. 1971; The polypeptide composition of influenza A viruses. Virology 44:396–408
    [Google Scholar]
  19. SKEHEL J. J., WATERFIELD M. D. 1975; Studies on the primary structure of influenza virus hemagglutinin. Proceedings of the National Academy of Sciences, U.S.A 72:93–97
    [Google Scholar]
  20. SKEHEL J. J., BAYLEY P. M., BROWN E. B., MARTIN S. R., WATERFIELD M. D., WHITE J. M., WILSON I. A., WILEY D. C. 1982; Changes in the conformation of influenza virus hemagglutinin at the pH optimum of virus-mediated membrane fusion. Proceedings of the National Academy of Sciences, U.S.A 79:968–972
    [Google Scholar]
  21. WARD C. W. 1981; Influenza hemagglutinin. Current Topics in Microbiology and Immunology 94:1–74
    [Google Scholar]
  22. WHARTON S. A. 1987; The role of influenza virus haemagglutinin in membrane fusion. Microbiological Sciences 4:119–124
    [Google Scholar]
  23. WHARTON S. A., RUIGROK R. W. H., MARTIN S. R., SKEHEL J. J., BAYLEY P. M., WEIS W., WILEY D. C. 1988a; Conformational aspects of the acid-induced fusion mechanism of influenza virus hemagglutinin: circular dichroism and fluorescence studies. Journal of Biological Chemistry 263:4474–4480
    [Google Scholar]
  24. WHARTON S. A., MARTIN S. R., RUIGROK R. W. H., SKEHEL J. J., WILEY D. C. 1988b; Membrane fusion by peptide analogues of influenza virus haemagglutinin. Journal of General Virology 69:1847–1857
    [Google Scholar]
  25. WHITE J., HELENIUS A., GETHING M. J. 1982; Haemagglutinin of influenza virus expressed from a cloned gene promotes membrane fusion. Nature, London 300:658–659
    [Google Scholar]
  26. WILEY D. C., SKEHEL I. J. 1987; The structure and function of the HA membrane glycoprotein of influenza virus. Annual Review of Biochemistry 56:365–394
    [Google Scholar]
  27. WILEY D. C, SKEHEL J. J., WATERFIELD M. 1977; Evidence from studies with a cross-linking reagent that the hemagglutinin of influenza virus is a trimer. Virology 79:446–448
    [Google Scholar]
  28. WILSON J. A., SKEHEL J. J., WILEY D. C. 1981; Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 Å resolution. Nature, London 289:366–373
    [Google Scholar]
  29. WRIGLEY N. G., BROWN E. B., CHILLINGWORTH R. K. 1983; Combining accurate defocus with low-dose imaging in high resolution electron microscopy of biological material. Journal of Microscopy 130:225–232
    [Google Scholar]
/content/journal/jgv/10.1099/0022-1317-69-11-2785
Loading
/content/journal/jgv/10.1099/0022-1317-69-11-2785
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error