1887

Abstract

Summary

Genes of canine adenovirus type 2 (CAd2) involved in transformation were localized and their functions investigated. Cells transformed by CAd2 whole DNA or the HI A fragment (leftmost 47%) totally lacked contact inhibition and were serum-independent, anchorage-independent and tumorigenic in newborn rats. All the cells transformed by the I D (0 to 15.2%) and the RI C (0 to 11.3%) fragments were morphologically transformed, but were serum-dependent, anchorage-dependent and not tumorigenic in newborn rats after 150 and 190 days observation, respectively, when 5 × 10 cells per rat were injected. No transforming activities were detected by DNA fragments smaller than RI C. By Northern blot hybridization, it was shown that a 1 kb mRNA was encoded in the 0 to 45% region of the genome, and 1.1 kb and 2 kb RNAs in the 4.5 to 11% region. It was therefore suggested that these gene products are required for morphological transformation, and other gene(s) or element(s), which have not been identified, may be involved in serum independence, anchorage independence and tumorigenicity of the transformed cells.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-69-10-2471
1988-10-01
2022-01-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/69/10/JV0690102471.html?itemId=/content/journal/jgv/10.1099/0022-1317-69-10-2471&mimeType=html&fmt=ahah

References

  1. BELLETT A. J. D., LI P., DAVID E. T., MACKEY E. J., BRAITHWAITE A. W., CUIR J. R. 1985; Control functions of adenovirus transforming region E1A gene products in rat and human cells. Molecular and Cellular Biology 5:1933–1939
    [Google Scholar]
  2. BERNARDS R., HOUWELING A., SCHRIER P. I., BOS J. L., VAN DER EB A. J. 1982; Characterization of cells transformed by Ad5/Ad12 hybrid early region 1 plasmids. Virology 120:422–432
    [Google Scholar]
  3. BORRELLI E., HEN R., CHAMBON P. 1984; Adenovirus-2 E1A products repress enhancer-induced stimulation of transcription. Nature, London 312:608–612
    [Google Scholar]
  4. BRAITHWAITE A. W., CHEETHAM B. F., LI P., PARISH C. R., WALDRON-STEVENS L. K., BELLETT A. J. D. 1983; Adenovirus-induced alternation of the cell growth cycle; a requirement for expression of E1A but not E1B. Journal of Virology 45:192–199
    [Google Scholar]
  5. FEINBERG A. P., VOGELSTEIN B. 1983; A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Analytical Biochemistry 132:6–13
    [Google Scholar]
  6. FEINBERG A. P., VOGELSTEIN B. 1984; A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity (addendum). Analytical Biochemistry 137:266–267
    [Google Scholar]
  7. GALLIMORE P. H., BYRD P. J., WHITTAKER J. L., GRAND R. J. A. 1985; Properties of rat cells transformed by DNA Plasmids containing adenovirus type 12 E1 DNA or specific fragments of the E1 region: comparison of transforming frequencies. Cancer Research 45:2670–2680
    [Google Scholar]
  8. GAYNOR R. B., HILLMAN D., BERK A. 1984; Adenovirus early region 1A protein activates transcription of a nonviral gene introduced into mammalian cells by infection or transfection. Proceedings of the National Academy of Sciences, U.S.A 81:1193–1197
    [Google Scholar]
  9. GRAHAM F. L., VAN DER EB A. J. 1973; A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52:456–467
    [Google Scholar]
  10. GRAND R. J. A. 1987; The structure and functions of the adenovirus early region 1 proteins. Biochemical Journal 241:25–38
    [Google Scholar]
  11. HEN R., BORRELLI E., CHAMBON P. 1985; Repression of the immunoglobulin heavy chain enhancer by the adenovirus-2 E1A products. Science 230:1391–1394
    [Google Scholar]
  12. HEN R., BORRELLI E., FROMENTAL C, SASSONE-CORSI P., CHAMBON P. 1986; A mutated polyoma virus enhancer which is active in undifferentiated embryonal carcinoma cells is not repressed by adenovirus-2 E1A products. Nature, London 321:249–251
    [Google Scholar]
  13. HURWITZ D. R., CHINNADURAI G. 1985a; Evidence that a second tumor antigen encoded by adenovirus early gene region E1a is required for efficient cell transformation. Proceedings of the National Academy of Sciences, U.S.A 82:163–167
    [Google Scholar]
  14. HURWITZ D. R., CHINNADURAI G. 1985b; Immortalization of rat embryo fibroblasts by an adenovirus 2 mutant expressing a single functional E1a protein. Journal of Virology 54:358–363
    [Google Scholar]
  15. IGARASHI K., SASADA R., KUROKAWA T., NHYAMA Y., TSUKAMOTO K., SUGINO Y. 1978; Biochemical studies on bovine adenovirus type 3. IV. Transformation by viral DNA and DNA fragments. Journal of Virology 28:219–226
    [Google Scholar]
  16. IMPÉRIALE M. J., KAO H-T., FELDMAN L. T., NEVINS J. R., STRICKLAND S. 1984; Common control of the heat shock gene and early adenovirus genes: evidence for a cellular E1A-like activity. Molecular and Cellular Biology 4:867–874
    [Google Scholar]
  17. JOCHEMSEN A. G., BERNARDS R., VAN KRANEN H. J., HOUWELING A., BOS J. L., VAN DER EB A. J. 1986; Different activities of the adenovirus type 5 and 12 E1A regions in transformation with the EJ Ha-ras oncogene. Journal of Virology 59:684–691
    [Google Scholar]
  18. JONES N. 1986; Negative regulation of enhancers. Nature, London 321:202–203
    [Google Scholar]
  19. JONES N., SHENK T. 1979; An adenovirus type 5 early gene function regulates expression of other early viral genes. Proceedings of the National Academy of Sciences, U.S.A 76:3665–3669
    [Google Scholar]
  20. KAO H-T., NEVINS J. R. 1983; Transcriptional activation and subsequent control of the human heat shock gene during adenovirus infection. Molecular and Cellular Biology 3:2058–2065
    [Google Scholar]
  21. KELEKAR A., COLE M. D. 1986; Tumorigenicity of fibroblast lines expressing the adenovirus E1 a, cellular p53, or normal c-myc genes. Molecular and Cellular Biology 6:7–14
    [Google Scholar]
  22. KIMELMAN D., MILLER J. S., PORTER D., ROBERTS B. E. 1985; E1a regions of the human adenoviruses and of the highly oncogenic simian adenovirus 7 are closely related. Journal of Virology 53:399–409
    [Google Scholar]
  23. KIMURA G., ITAGAKI A., SUMMERS J. 1975; Rat cell line 3Y1 and its virogenic polyoma- and SV40-transformed derivatives. International Journal of Cancer 15:694–706
    [Google Scholar]
  24. KUPPUSWAMY M. N., CHINNADURAI G. 1987; Relationship between the transforming and transcription regulatory functions of adenovirus 2 E1a oncogene. Virology 159:31–38
    [Google Scholar]
  25. LAND H., PARADA L. F., WEINBERG R. A. 1983; Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature, London 304:596–602
    [Google Scholar]
  26. LILLIE J. W., GREEN M. R. 1986; An adenovirus E1a protein region required for transformation and transcription repression. Cell 46:1043–1051
    [Google Scholar]
  27. MONTELL C, COURTOIS G., ENG C., BERG A. 1984; Complete transformation by adenovirus 2 requires both E1A proteins. Cell 36:951–961
    [Google Scholar]
  28. MORAN E., MATHEWS M. B. 1987; Multiple functional domains in the adenovirus E1A gene. Cell 48:177–178
    [Google Scholar]
  29. MORAN E., GRODZICKER T., ROBERTS R. J., MATHEWS M. B., ZERLER B. 1986; Lytic and transforming function of individual products of the adenovirus E1A gene. Journal of Virology 57:765–775
    [Google Scholar]
  30. NEVINS J. R. 1981; Mechanism of activation of early viral transcription by the adenovirus E1A gene product. Cell 26:213–220
    [Google Scholar]
  31. POZZATTI R., MUSCHEL R., WILLIAMS J., PADMANABHAM R., HOWARD B., LIOTTA L., KHOURY G. 1986; Primary rat embryo cells transformed by one or two oncogenes show different metastatic potentials. Science 232:223–227
    [Google Scholar]
  32. ROBERTS B. E., MILLER J. S., KIMELMAN D., CEPKO C. L., LEMISHIKA I. R., MULLIGAN R. C. 1985; Individual adenovirus type 5 early region 1A gene products elicit distinct alternation of cellular morphology and gene expression. Journal of Virology 56:404–413
    [Google Scholar]
  33. ROSSINI M., WEINMANN R., BASERGA R. 1979; DNA synthesis in temperature-sensitive mutants of the cell cycle infected by polyoma virus and adeno virus. Proceedings of the National Academy of Sciences, U.S.A 76:4441–4445
    [Google Scholar]
  34. RULEY H. E. 1983; Adenovirus early region 1A enables viral and cellular transforming genes to transform primary cells in culture. Nature, London 304:602–606
    [Google Scholar]
  35. SAWADA Y., FUJINAGA K. 1980; Mapping of adenovirus 12 mRNA’s transcribed from the transforming region. Journal of Virology 36:639–651
    [Google Scholar]
  36. SCHMER P. I., BERNARDS R., VAESSEN R. T. M. J., HOUWELING A., VAN DER EB A. J. 1983; Expression of class I major histocompatibility antigens switched off by high oncogenic adenovirus 12 in transformed rat cells. Nature, London 305:771–775
    [Google Scholar]
  37. SHLNAGAWA M., MATSUDA A., ISHIYAMA T., GOTO H., SATO G. 1983; A rapid and simple method for preparation of adenovirus DNA from infected cells. Microbiology and Immunology 27:817–822
    [Google Scholar]
  38. SHLNAGAWA M., IIDA Y., MATSUDA A., TSUKIYAMA T., SATO G. 1987; Phylogenetic relationships between adenoviruses as inferred from nucleotide sequences of inverted terminal repeats. Gene 55:85–93
    [Google Scholar]
  39. SHIROKI K., HASHIMOTO S., SAITO I., FUKUI Y., FUKUI Y., KATO H., SHIMOJO H. 1984; Expression of the E4 gene is required for establishment of soft-agar colony-forming rat cell lines transformed by the adenovirus 12 E1 gene. Journal of Virology 50:854–863
    [Google Scholar]
  40. SOUTHERN E. M. 1975; Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98:503–517
    [Google Scholar]
  41. STEIN R., ZIFF E. B. 1984; HeLa cell β-tubulin gene transcription is stimulated by adenovirus 5 in parallel with viral early genes by an E la-dependent mechanism. Molecular and Cellular Biology 4:2792–2801
    [Google Scholar]
  42. TREISMAN R., GREEN M. R., MANLATLS T. 1983; cis and trans activation of globin gene transcription in transient assays. Proceedings of the National Academy of Sciences, U.S.A 80:7428–7432
    [Google Scholar]
  43. VAN DEN ELSEN P., DE PATER S., HOUWELING A., VAN DER VEER J., VAN DER EB A. J. 1982; The relationship between region E1a and Elb of human adenoviruses in cell transformation. Gene 18:175–185
    [Google Scholar]
  44. VAN DEN ELSEN P., HOUWELING A., VAN DER EB A. J. 1983a; Expression of region Elb of human adenoviruses in the absence of region E1a is not sufficient for complete transformation. Virology 128:377–390
    [Google Scholar]
  45. VAN DEN ELSEN P., HOUWELING A., VAN DER EB A. J. 1983b; Morphological transformation of human adenoviruses is determined to a large extent by gene products of region Elb. Virology 131:242–246
    [Google Scholar]
  46. YAMASHITA T., REN C. S., YOSHIDA K., SHINAGAWA M., MASUDA K., FUJINAGA K. 1985; Two distinctive transforming DNA regions on the canine adenovirus type 1 genome. Japanese Journal of Cancer Research (Gann) 76:436–440
    [Google Scholar]
  47. YOSHIDA K., FUJINAGA K. 1980; Unique species of mRNA from adenovirus type 7 early region 1 in cells transformed by adenovirus type 7 DNA fragment. Journal of Virology 36:337–352
    [Google Scholar]
  48. ZERLER B., MORAN B., MORUYAMA K., MOOMAW J., GRODZICKER T., RULEY H. E. 1986; Adenovirus E1A coding sequences that enable ras and pmt oncogenes to transform cultured primary cells. Molecular and Cellular Biology 6:887–899
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-69-10-2471
Loading
/content/journal/jgv/10.1099/0022-1317-69-10-2471
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error