1887

Abstract

Summary

The complete nucleotide sequence of the genes coding for the two membrane glycoproteins E1 and E2 of rubella virus has been determined from cloned cDNA derived from the 40S genomic RNA. A sequence of 2451 nucleotides extending from the poly (A) tract towards the 5′ end is presented. Within one continuous open reading frame E2 is located amino-terminally followed by E1 and a 58 residue long untranslated 3′ region preceding the poly(A) tract. The coding regions of E2 and E1 are unusually G/C rich, 71·4% and 66·4% respectively. At the carboxy-terminal end of the coding region of E1, there is an inverted complementary nucleotide sequence, which could form a 13 base pair hairpin structure. Mature E2 and E1 are both preceded by a stretch of uncharged mainly non-polar amino acids, 21 and 20 residues in length, respectively. These could serve as signal peptides that mediate the membrane translocation of the proteins. At the carboxy termini of both proteins there are stretches of hydrophobic amino acids, 19 and 27 residues in length, which probably represent the transmembrane anchors of the proteins. The size of mature E1 is 481 amino acids (mol. wt. 51502), whereas the exact size of mature E2 could not be established as its carboxy- terminal end could not be located in the sequence. A maximum size of 262 amino acids (mol. wt. 28277) is, however, suggested. Between the E2 and E1 genes, there is a stretch of seven amino acids, five of which are arginines, which may serve as cleavage sites for a trypsin-like protease. E1 contains three and E2 four potential sites for asparagine- linked glycosylation. Both proteins are cysteine-rich (5 %). Comparison of the rubella virus amino acid sequence to those of several alphaviruses indicated no sequence homology.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-68-9-2347
1987-09-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/68/9/JV0680092347.html?itemId=/content/journal/jgv/10.1099/0022-1317-68-9-2347&mimeType=html&fmt=ahah

References

  1. Allington W. B., Cordry A. L., Mccullough G. A., Mitchell D. E. 1978; Electrophoretic concentration of macromolecules. Analytical Biochemistry 93:153–157
    [Google Scholar]
  2. Dalgarno L., Rice C. M., Strauss J. H. 1983; Ross River virus 26S RNA: complete nucleotide sequence and deduced sequence of the encoded structural proteins. Virology 129:170–187
    [Google Scholar]
  3. Frey T. k., Marr L. d., Hemphill M. L., Dominguez G. 1986; Molecular cloning and sequencing of the region of the rubella virus genome coding for glycoprotein El. Virology 154:228–232
    [Google Scholar]
  4. Garoff H., Frischauf A.-M., Simons K., Lehrach H., Delius H. 1980a; Nucleotide sequence of cDNA coding for Semliki Forest virus membrane glycoprotein. Nature; London: 288236–241
    [Google Scholar]
  5. Garoff H., Frischauf A.-M., Simons K., Lehrach H. 1980b; The capsid protein of Semliki Forest virus has clusters of basic amino acids and prolines in its amino terminal region. Proceedings of the National Academy of Sciences U.S.A.: 776376–6380
    [Google Scholar]
  6. Grunstein J. M., Hogness D. S. 1975; Colony hybridization: a method for the isolation of cloned DNAs that contain a specific gene. Proceedings of the National Academy of Sciences U.S.A.: 723961–3965
    [Google Scholar]
  7. Hashimoto K., Erdei S., Keränen S., Saraste J., Kääriäinen L. 1980; Evidence for a separate signal sequence for the carboxy-terminal envelope glycoprotein El of Semliki Forest virus. Journal of Virology 38:34–40
    [Google Scholar]
  8. Henderson L. E., Oroszlan S., Konigsberg W. 1979; A micromethod for complete removal of dodecyl sulfate from proteins by ion-pair extraction. Analytical Biochemistry 93:153–157
    [Google Scholar]
  9. Kalkkinen N., Oker-Blom C., Pettersson R. f. 1984; Three genes code for rubella virus structural proteins El, E2a, E2b and C. Journal of General Virology 65:1549–1557
    [Google Scholar]
  10. Kinney R. M., Johnson B. J. B., Brown V. L., Trent D. W. 1986; Nucleotide sequence of the 26S mRNA of the virulent Trinidad donkey strain of Venezuelan equine encephalitis virus and deduced sequence of the encoded structural proteins. Virology 152:400–413
    [Google Scholar]
  11. Kyte J., Doolittle R. F. 1982; A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology 157:105–132
    [Google Scholar]
  12. Levis R., Weiss B. G., Tsiang M., Huang H., Schilesinger S. 1986; Deletion mapping of Sindbis virus DI RNAs derived fromcDNAs defines the sequences essential for replication and packaging. Cell 44:137–145
    [Google Scholar]
  13. Maizel J. v., Lenk R. p. 1981; Enhanced graphic matrix analyses of nucleic acid and protein sequences. >Proceedings of the National Academy of Sciences U.S.A.: 787665–7669
    [Google Scholar]
  14. Maxam A. M., Gilbert W. 1980; Sequencing end-labeled DNA with base-specific chemical cleavages. Methods in Enzymology 65:499–560
    [Google Scholar]
  15. Messing J. 1983; New M13 vectors for cloning. Methods in Enzymology 101:20–78
    [Google Scholar]
  16. Nakhasi H. L., Meyer B. C., Liu T.-Y. 1986; Rubella virus cDNA. Sequence and expression of El envelope protein. Journal of Biological Chemistry 261:16616–16621
    [Google Scholar]
  17. Needleman S. B., Wunsch C. D. 1970; A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology 48:443–453
    [Google Scholar]
  18. Oker-blom C. 1984; The gene order for rubella virus structural proteins is NH2-C-E2-E1-COOH. Journal of Virology 51:354–358
    [Google Scholar]
  19. Oker-Blom C., Kalkkinen N., Kääriäinen L., Pettersson R. F. 1983; Rubella virus contains one capsid protein and three envelope glycoproteins, El, E2a, and E2b. Journal of Virology 46:964–973
    [Google Scholar]
  20. Oker-Blom C., Ulmanen I., Kääriäinen L., Pettersson R. F. 1984; Rubella virus 40S genome RNA specifies a 24S subgenomic mRNA that codes for a precursor to the structural proteins. Journal of Virology 49:403–408
    [Google Scholar]
  21. Ou J.-h., Strauss E. G., Strauss J. H. 1981; Comparative studies of the 3'-terminal sequences of several alphavirus RNAs. Virology 109:281–289
    [Google Scholar]
  22. Peltola H., Söderlund H., Ukkonen E. 1984; SEQAID: a DNA sequence assembling program based on a mathematical model. Nucleic Acids Research 12:307–321
    [Google Scholar]
  23. Pettersson R. F., Oker-Blom C., Kalkkinen N., Kallio A., Ulmanen I., Kääriäinen L., Partanen P., Vaheri A. 1985; Molecular and antigenic characteristics and synthesis of rubella virus structural proteins. Reviews of Infectious Diseases 7: supplement 1 140–149
    [Google Scholar]
  24. Porterfield J. S., Casals J., Chumakov M. P., Gaidamovich S. Y., Hannoun C., Holmes I. H., Horzinek M. C., Mussgay M, Russell P. K., Trent D. W. 1978; Togaviridae. Intervirology 9:129–148
    [Google Scholar]
  25. Rice C. M., Strauss J. H. 1981; Nucleotide sequence of the 26S mRNA ofSindbis virus and deduced sequence of the encoded virus structural proteins. Proceedings of the National Academy of Sciences U.S.A.: 782062–2066
    [Google Scholar]
  26. Salser W. 1977; Globin mRNA sequences: analysis of base pairing and evolutionary implications. Cold Spring Harbor Symposia on Quantitative Biology 42:985–1002
    [Google Scholar]
  27. Sanger F., Nicklen S., Coulson A. r. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences U.S.A.: 745463–5467
    [Google Scholar]
  28. Söderlund H., Keränen S., Lehtovaara P., Palva I., Perttersson R. F., Kääriäinen L. 1981; Structural complexity of defective-interfering RNAs of Semliki Forest virus as revealed by analysis of complementary DNA. Nucleic Acids Research 9:3403–3417
    [Google Scholar]
  29. Southern E. M. 1975; Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98:503–518
    [Google Scholar]
  30. Strauss E. G., Strauss I. H. 1983; Replication strategies of single stranded RNA viruses of eukaryotes. Current Topics in Microbiology and Immunology 105:1–98
    [Google Scholar]
  31. Thomas P. S. 1980; Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proceedings of the National Academy of Sciences U.S.A.: 775201–5205
    [Google Scholar]
  32. Toivonen V., Vainionpää R., Salmi A., Hyypiä T. 1983; Glycopolypeptides of rubella virus. Archives of Virology 77:91–95
    [Google Scholar]
  33. Waxham M. N., Wolinsky J. S. 1983; Immunochemical identification of rubella virus hemagglutinin. Virology 126:194–203
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-68-9-2347
Loading
/content/journal/jgv/10.1099/0022-1317-68-9-2347
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error