Synergistic Neutralization of Rubella Virus by Monoclonal Antibodies to Viral Haemagglutinin Free

Abstract

SUMMARY

Using murine monoclonal antibodies (MAbs) to rubella virus haemagglutinin, five epitopes were identified in competitive ELISA binding assays: A, B, D and E by haemagglutination-inhibiting (HI) MAbs with no neutralizing (Nt) activity, and C by a MAb with neither activity. However, when HI and Nt activities were determined in the presence of anti-mouse immunoglobulins, epitopes A, B and D were defined by both HI and Nt MAbs, whereas epitopes C and E were identified by HI MAbs without Nt activity. A synergistic Nt activity, in the absence of anti-mouse immunoglobulins, was displayed by mixtures of antibodies of different epitope groups. Analysis of mixtures of MAb pairs each belonging to a different epitope class, showed that synergistic Nt activity was elicited primarily by the group A epitope, secondarily by groups B and D and only minimally by groups C and E.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-68-7-2007
1987-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/68/7/JV0680072007.html?itemId=/content/journal/jgv/10.1099/0022-1317-68-7-2007&mimeType=html&fmt=ahah

References

  1. Ashe W. K., Notkins A. L. 1966; Neutralization of an infectious herpes simplex virus-antibody complex by antiglobulin. Proceedings of the National Academy of Sciences, U.S.A 56:447–451
    [Google Scholar]
  2. Burnette W. M. 1981; “Western blotting”. Electrophoretic transfer of proteins from sodium dodecyl sulfatepolyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated Protein A. Analytical Biochemistry 112:195–203
    [Google Scholar]
  3. Clegg J. C. S., Chanas A. C., Gould E. A. 1983; Conformational changes in Sindbis virus E1 glycoprotein induced by monoclonal antibody binding. Journal of General Virology 64:1121–1126
    [Google Scholar]
  4. Gerna G. 1975; Rubella virus identification in primary and continuous monkey kidney cell cultures by the immunoperoxidase technique. Archives of Virology 49:291–295
    [Google Scholar]
  5. Gravell M., Dorsett P. H., Gutenson O., Ley A. C. 1977; Detection of antibody to rubella virus by enzyme-linked immunosorbent assay. Journal of Infectious Diseases 136: supplement S300–S303
    [Google Scholar]
  6. Green K. Y., Dorsett P. H. 1986; Rubella virus antigens: localization of epitopes involved in hemagglutination and neutralization by using monoclonal antibodies. Journal of Virology 57:893–898
    [Google Scholar]
  7. Heinz F. X. 1986; Epitope mapping of flavivirus glycoproteins. Advances in Virus Research 31:103–168
    [Google Scholar]
  8. Horzinek M. C. 1981 Non-arthropod Borne Togaviruses London: Academic Press;
    [Google Scholar]
  9. Ho-Terry L., Cohen A., Tedder R. S. 1984; Immunologic characterization of rubella virus polypeptides. Journal of Medical Microbiology 17:105–109
    [Google Scholar]
  10. Kingsford L. 1984; Enhanced neutralization of La Crosse virus by the binding of specific pairs of monoclonal antibodies to the G1 glycoprotein. Virology 136:265–273
    [Google Scholar]
  11. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage. T4. Nature; London: 227680–685
    [Google Scholar]
  12. Lubeck M. D., Gerhard W. 1981; Topographical mapping of antigenic sites on the influenza A/PR/8/34 virus hemagglutinin using monoclonal antibodies. Virology 113:62–64
    [Google Scholar]
  13. Mccullough K. C. 1986; Monoclonal antibodies: implications for virology. Archives of Virology 87:1–36
    [Google Scholar]
  14. Oker-Blom C., Kalkkinen N., Kääriäinen L., Pettersson R. F. 1983; Rubella virus contains one capsid protein and three envelope glycoproteins, E1, E2a, and E2b. Journal of Virology 46:964–973
    [Google Scholar]
  15. Palmer D. F., Hermann K. L., Lincoln R. E., Hearn M. V., Fuller J. M. 1970 A Procedural Guide to the Performance of the Standardized Rubella Hemagglutination-inhibition Test Immunity Series No. 2 Atlanta: Center for Disease Control;
    [Google Scholar]
  16. Porterfield J. S., Casals J., Chumakov M. P., Gaidamovich S. Y., Hannoun C., Holmes I. H., Horzinek M. C., Mussgay M., Oker-Blom N., Russell P. K., Trent D. W. 1978; Togaviridae. Intervirology 9:129–148
    [Google Scholar]
  17. Sato H., Albrecht P., Krugman S., Ennis F. A. 1979; Sensitive neutralization test for rubella antibody. Journal of Clinical Microbiology 9:259–265
    [Google Scholar]
  18. Steinbuch M., Audran R. 1969; The isolation of IgG from mammalian sera with the aid of caprylic acid. Archives of Biochemistry and Biophysics 134:279–284
    [Google Scholar]
  19. Umino Y., Sato T. A., Katow S., Matsuno T., Sugiura A. 1985; Monoclonal antibodies directed to E1 glycoprotein of rubella virus. Archives of Virology 83:33–42
    [Google Scholar]
  20. Waxham M. N., Wolinsky J. S. 1983; Immunochemical identification of rubella virus hemagglutinin. Virology 126:193–203
    [Google Scholar]
  21. Waxham M. N., Wolinsky J. S. 1985; Detailed immunologic analysis of the structural polypeptides of rubella virus using monoclonal antibodies. Virology 143:153–165
    [Google Scholar]
  22. Wilson M. B., Nakane P. K. 1978; Developments in the periodate method of conjugating horseradish peroxidase to antibodies. In Immunofluorescence and Related Staining Techniques pp. 215–225 Knapp W., Holubar K., Wick G. Edited by Amsterdam: Elsevier;
    [Google Scholar]
  23. Wolinsky J. S., Waxham M. N., Hess J. L., Townsend J. J., Baringer J. R. 1982; Immunochemical features of a case of progressive rubella panencephalitis. Clinical and Experimental Immunology 48:359–366
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-68-7-2007
Loading
/content/journal/jgv/10.1099/0022-1317-68-7-2007
Loading

Data & Media loading...

Most cited Most Cited RSS feed