1887

Abstract

Summary

Sequencing of part of a clone from a transmissible gastroenteritis virus genome cDNA library led to the identification of the gene encoding the E1 matrix protein. The amino acid sequence of the primary translation product predicts a polypeptide of 262 residues which shares many features with the previously characterized murine hepatitis virus and infectious bronchitis virus E1 proteins. However, N-terminal amino acid sequencing revealed that a putative signal peptide of 17 residues was absent in the virion-associated polypeptide. The predicted mol. wt. of the mature unglycosylated product, 27 800, is in agreement with the experimental value.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-68-6-1687
1987-06-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/68/6/JV0680061687.html?itemId=/content/journal/jgv/10.1099/0022-1317-68-6-1687&mimeType=html&fmt=ahah

References

  1. Armstrong J., Niemann H., Smeekens S., Rottier P., Warren G. 1984; Sequence and topology of a model intracellular membrane protein, E1 glycoprotein from a coronavirus. Nature; London: 308751–752
    [Google Scholar]
  2. Boursnell M. E. G., Brown T. D. K., Binns M. M. 1984; Sequence of the membrane protein gene from avian coronavirus IBV. Virus Research 1:303–313
    [Google Scholar]
  3. Brian D. A., Douglas D. E., Guy J. S. 1980; Genome of porcine transmissible gastroenteritis virus. Journal of Virology 34:410–415
    [Google Scholar]
  4. Brown T. D. K., Boursnell M. E. G., Binns M. M. 1984; A leader sequence is present on mRNA A of avian infectious bronchitis virus. Journal of General Virology 65:1437–1442
    [Google Scholar]
  5. Budzilowicz C. J., Wilczynski S. P., Weiss S. R. 1985; Three intergenic regions of coronavirus mouse hepatitis virus strain A59 genome RNA contain a common nucleotide sequence that is homologous to 3′ end of the viral mRNA leader sequence. Journal of Virology 53:834–840
    [Google Scholar]
  6. Cavanagh D., Davis P. J., Pappin D. J. C. 1986; Coronavirus IBV glycopolypeptides: locational studies using proteases and saponin, a membrane permeabilizer. Virus Research 4:145–156
    [Google Scholar]
  7. Deininger P. L. 1983; Random subcloning of sonicated DNA: application to shotgun DNA sequence analysis. Analytical Biochemistry 129:216–223
    [Google Scholar]
  8. Garwes D. J., Pocock D. H. 1975; The polypeptide structure of transmissible gastroenteritis virus. Journal of General Virology 29:25–34
    [Google Scholar]
  9. Garwes D. J., Pocock D. H., Pike B. V. 1976; Isolation of subviral components from transmissible gastroenteritis virus. Journal of General Virology 32:283–294
    [Google Scholar]
  10. Garwes D. J., Bountiff L., Millson G. C., Elleman C. J. 1984; Defective replication of porcine transmissible gastroenteritis virus in a continuous cell line. Advances in Experimental Medicine and Biology 173:79–93
    [Google Scholar]
  11. Holmes K. v., Doller E. W., Sturman L. S. 1981; Tunicamycin resistant glycosylation of coronavirus glycoprotein: demonstration of a novel type of viral glycoprotein. Virology 115:334–344
    [Google Scholar]
  12. Hopp T. P., Woods K. R. 1981; Prediction of protein antigenic determinants from amino acid sequences. Proceedings of the National Academy of Sciences U.S.A: 783824–3828
    [Google Scholar]
  13. Hu S., Bruszewski J., Boone T., Souza L. 1984; Cloning and expression of the surface glycoprotein gp 195 of porcine transmissible gastroenteritis virus. In Modem Approaches to Vaccines pp. 219–223 Chanock R. M., Lemer R. A. Edited by New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  14. Hunkapiller M. W., Lujan E., Ostrander F., Hood L. E. 1983; Isolation of microgram quantities of proteins from polyacrylamide gels for amino acid sequence analysis. Methods in Enzymology 91:227–236
    [Google Scholar]
  15. Jacobs L., Van Der Zeijst B. A. M., Horzinek M. C. 1986; Characterization and translation of transmissible gastroenteritis virus mRNAs. Journal of Virology 57:1–6
    [Google Scholar]
  16. Karplus P. A., Schulz G. E. 1985; Prediction of chain flexibility in proteins, a tool for the selection of peptide antigens. Naturwissenschaften 72:212–214
    [Google Scholar]
  17. Klenk H. D., Rott R. 1980; Cotranslational and posttranslational processing of viral glycoproteins. Current Topics in Microbiology and Immunology 90:19–48
    [Google Scholar]
  18. Kozak M. 1983; Comparison of initiation of protein synthesis in procaryotes, eucaryotes and organelles. Microbiological Reviews 47:1–45
    [Google Scholar]
  19. Lai M. M. C., Baric R. S., Brayton P. R., Stohlman S. A. 1984; Characterization of leader RNA sequences on the virion and mRNAs of mouse hepatitis virus, a cytoplasmic RNA virus. Proceedings of the National Academy of Sciences U.S.A: 813626–3630
    [Google Scholar]
  20. Laude H., Chapsal J. M., Gelfi J., Labiau S., Grosclaude J. 1986; Antigenic structure of transmissible gastroenteritis virus. I. Properties of monoclonal antibodies directed against virion proteins. Journal of General Virology 67:119–130
    [Google Scholar]
  21. McGeoch D. J. 1985; On the predictive recognition of signal peptide sequences. Virus Research 3:271–286
    [Google Scholar]
  22. Niemann H., Klenk H. D. 1981; Coronavirus glycoprotein E1,a new type of viral glycoprotein. Journal of Molecular Biology 153:993–1010
    [Google Scholar]
  23. Niemann H., Geyer R., Klenk H. D., Linder D., Stirm S., Wirth M. 1984; The carbohydrates of mouse hepatitis virus (MHV) A59: structures of the O-glycosidically linked oligosaccharides of glycoprotein E1. EMBO Journal 3:665–670
    [Google Scholar]
  24. Queen C., Korn L. J. 1984; A comprehensive sequence analysis program for the IBM personal computer. Nucleic Acids Research 12:581–599
    [Google Scholar]
  25. Rasschaert D., Delmas B., Charley B., Grosclaude J., Gelfi J., Laude H. 1987; Surface glycoproteins of transmissible gastroenteritis virus: functions and gene sequence. In Biochemistry and Biology of Coronaviruses Lai M. M. C., Stohlman S. Edited by New York & London: Plenum Press; in press
    [Google Scholar]
  26. Rose G. D., Geselowitz A. R., Lesser G. J., Lee R. H., Zehfus M. H. 1985; Hydrophobicity of amino acid residues in globular proteins. Science 229:834–838
    [Google Scholar]
  27. Rottier P., Bradenburo D., Armstrong J., Van Der Zeijst B. A. M., Warren G. 1984; Assembly in vitro of a spanning membrane protein of the endoplasmic reticulum: the E1 glycoprotein of coronavirus mouse hepatitis virus A59. of the National Academy of Sciences, U.S.A 81:1421–1425
    [Google Scholar]
  28. Rottier P., Armstrong J., Meyer D. I. 1985; Signal recognition particle dependent insertion of coronavirus E1,an intracellular membrane glycoprotein. Journal of Biological Chemistry 260:4648–4652
    [Google Scholar]
  29. Rottier P., Welling G. W., Welling-Wester S., Niesters H. G. M., Lenstra J. A., Van Der Zeijst B. A. M. 1986; Predicted membrane topology of the coronavirus protein E1. Biochemistry 25:1335–1339
    [Google Scholar]
  30. Siddell S., Wege H., Ter Meulen V. 1983; The biology of coronaviruses. Journal of General Virology 64:761–776
    [Google Scholar]
  31. Spaan W. J. M., Delius H., Skinner M., Armstrong J., Rottier P., Smeekens S., Van Der Zeijst B. A. M., Siddell S. G. 1983; Coronavirus mRNA synthesis involves fusion of non-contiguous sequences. EMBO Journal 2:1839–1844
    [Google Scholar]
  32. Stern D. F., Sefton B. M. 1982a; Coronavirus proteins: biogenesis of avian infectious bronchitis virus virion proteins. Journal of Virology 44:794–803
    [Google Scholar]
  33. Stern D, Sefton B. M. 1982b; Coronavirus proteins: structure and function of the oligosaccharides of the avian infectious bronchitis virus glycoproteins. Journal of Virology 44:804–812
    [Google Scholar]
  34. Tooze J., Tooze S. A., Warren G. 1985; Laminated cisternae of the rough endoplasmic reticulum induced by coronavirus MHV-A59 infection. European Journal of Cell Biology 36:108–115
    [Google Scholar]
  35. Van Der Werf S., Bregegere F., Kopecka H., Kitamura N., Rothberg P. G., Kourilsky P., Wimmer E., Girard M. 1981; Molecular cloning of the genome of poliovirus type 1. of the National Academy of Sciences, U.S.A 78:5983–5987
    [Google Scholar]
  36. Von Heijne G. 1986; A new method for predicting signal sequence cleavage sites. Nucleic Acids Research 14:4683–4690
    [Google Scholar]
  37. Zain S., Sambrook J., Roberts R. J., Keller W., Fried M., Dunn A. R. 1979; Nucleotide sequence analysis of the leader segments in a cloned copy of adenovirus 2 fiber mRNA. Cell 16:851–861
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-68-6-1687
Loading
/content/journal/jgv/10.1099/0022-1317-68-6-1687
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error