1887

Abstract

SUMMARY

We report the isolation of a variant (X2D) of herpes simplex virus type 1 strain 17 which has a deletion of 5 × 10 mol. wt. in the long unique and long inverted repeat regions, such that one copy of the immediate early (IE) gene 1 and two unique open reading frames coding for polypeptides of 20K and 22K are deleted. The mutant X2D synthesizes reduced levels of VIE110, and also apparently fails to synthesize VIE63, at both the protein and RNA levels, despite there being no apparent deletion in the coding or controlling regions of the IE2 gene. X2D also fails to synthesize the thymidine kinase polypeptide but exhibits normal growth characteristics in tissue culture.

Keyword(s): deletion mutant , HSV-1 and IRL
Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-68-5-1339
1987-05-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/68/5/JV0680051339.html?itemId=/content/journal/jgv/10.1099/0022-1317-68-5-1339&mimeType=html&fmt=ahah

References

  1. Ackermann M., Sarmiento M., Roizman B. 1985; Application of antibody to synthetic peptides for characterization of the intact and truncated alpha 22 protein specified by herpes simplex virus 1 and the R325 alpha 22 deletion mutant. Journal of Virology 56:207–215
    [Google Scholar]
  2. Batterson W., Roizman B. 1983; Characterization of the herpes simplex virion-associated factor responsible for the induction of alpha genes. Journal of Virology 46:371–377
    [Google Scholar]
  3. Birnboim H. C., Doly J. 1979; A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Research 7:1513–1523
    [Google Scholar]
  4. Brown S. M., Harland J. 1987; Three mutants of herpes simplex virus type 2: one lacking the genes US10, US11, US12 and two in which Rs has been extended by 6 kb to 0·91 map units with loss of Us sequences between 0·94 and the US/TRS junction. Journal of General Virology 68:1–18
    [Google Scholar]
  5. Brown S. M., Ritchie D. A., Subak-Sharpe J. H. 1973; Genetic studies with herpes simplex virus type 1. The isolation of temperature-sensitive mutants, their arrangement into complementation groups and recombination analysis leading to a linkage map. Journal of General Virology 18:329–346
    [Google Scholar]
  6. Brown S. M., Harland J., Subak-Sharpe J. H. 1984; Isolation of restriction endonuclease site deletion mutants of herpes simplex virus. Journal of General Virology 65:1053–1068
    [Google Scholar]
  7. Bullock P., Forrester W., Botchan M. 1984; DNA sequence studies of simian virus 40 chromosomal excision and integration in rat cells. Journal of Molecular Biology 174:55–84
    [Google Scholar]
  8. Campbell M. E. M., Palfreyman J. w., Preston C. M. 1984; Identification of herpes simplex virus DNA sequences which encode a /ram-activating polypeptide responsible for stimulation of immediate-early transcription. Journal of Molecular Biology 180:1–19
    [Google Scholar]
  9. Clements J. B., Watson R. J., Wilkie N. M. 1977; Temporal regulation of herpes simplex virus type 1 transcription: location of transcripts on the viral genome. Cell 12:275–285
    [Google Scholar]
  10. Clements J. B., Mclauchlan J. 1979; Orientation of herpes simplex virus type 1 immediate-early mRNAs. Nucleic Acids Research 7:77–91
    [Google Scholar]
  11. Davison A. J., Scott J. E. 1986; The complete DNA sequence of varicella-zoster virus. Journal of General Virology 67:1759–1816
    [Google Scholar]
  12. Dixon R. A. F., Schaffer P. A. 1980; Fine-structure mapping and functional analysis of temperature-sensitive mutants in the gene encoding the herpes simplex virus type 1 immediate early protein VP175. Journal of Virology 36:189–203
    [Google Scholar]
  13. Everett R. D. 1986; The products of herpes simplex virus type 1 (HSV-1) immediate early genes 1, 2 and 3 can activate HSV-1 gene expression in trans . Journal of General Virology 67:2507–2513
    [Google Scholar]
  14. Gaffney D. F., Mclauchlan J., Whitton J. L. 1985; A modular system for the assay of transcription regulatory signals: the sequence TAATGARAT is required for herpes simplex virus immediate-early gene activation. Nucleic Acids Research 13:7847–7863
    [Google Scholar]
  15. Harland J., Brown S. M. 1985; Isolation and characterization of deletion mutants of herpes simplex virus type 2 (strain HG52). Journal of General Virology 66:1305–1321
    [Google Scholar]
  16. Honess R. W., Roizman B. 1974; Regulation of herpesvirus macromolecular synthesis. I. Cascade regulation of the synthesis of three groups of viral proteins. Journal of Virology 14:8–19
    [Google Scholar]
  17. Honess R. W., Roizman B. 1975; Regulation of herpesvirus macromolecular synthesis: sequential transition of polypeptide synthesis requires functional viral polypeptides. Proceedings of the National Academy of Sciences, U.S.A 72:1276–1280
    [Google Scholar]
  18. Johnson P. A., Maclean C. A., Marsden H. S., Dalziel R. G., Everett R. D. 1986; The product of gene US11 of herpes simplex virus type 1 is expressed as a true late gene. Journal of General Virology 67:871–883
    [Google Scholar]
  19. Longnecker R., Roizman B. 1986; Generation of an inverting herpes simplex virus 1 mutant lacking the L-S junction a sequences, an origin of DNA synthesis, and several genes including those specifying glycoprotein E and the alpha 47 gene. Journal of Virology 58:583–591
    [Google Scholar]
  20. Lonsdale D. M. 1979; A rapid technique for distinguishing herpes simplex virus type 1 from type 2 by restriction enzyme technology. lancet i:849–852
    [Google Scholar]
  21. Mcgeoch D. J., Dolan A., Donald S., Rixon F. J. 1985; Sequence determination and genetic content of the short unique region of herpes simplex virus type 1. Journal of Molecular Biology 181:1–13
    [Google Scholar]
  22. Mclauchlan J., Gaffney D. F., Whitton J. L., Clements J. B. 1985; The consensus sequence YGTGTTYY located downstream from the AATAAA signal is required for efficient formation of mRNA 3′ termini. Nucleic Acids Research 13:1347–1368
    [Google Scholar]
  23. Macpherson I., Stoker M. G. 1962; Polyoma transformation of hamster cell clones-an investigation of genetic factors affecting cell competence. Virology 16:147–151
    [Google Scholar]
  24. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: A laboratory Manual New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  25. Marsden H. S., Crombie I. K., Subak-Sharpe J. H. 1976; Control of protein synthesis in herpesvirus-infected cells: analysis of the polypeptides induced by wild-type and sixteen temperature-sensitive mutants of HSV strain 17. Journal of General Virology 31:347–372
    [Google Scholar]
  26. Marsden H. S., Stow N. D., Preston V. G., Timbury M. C., Wilkie N. M. 1978; Physical mapping of herpes simplex virus induced polypeptides. Journal of Virology 28:628–642
    [Google Scholar]
  27. O’Hare P., Hayward G. S. 1985; Evidence for a direct role for both the 175,000- and 110,000-molecular weight immediate-early proteins of herpes simplex virus in the transactivation of delayed-early promoters. Journal of Virology 53:751–760
    [Google Scholar]
  28. Perry L. J. 1986 DNA sequence analysis of the repeat and adjoining unique region of the long segment of herpes simplex virus type 1 Ph.D. thesis University of Glasgow:
    [Google Scholar]
  29. Perry L. J., Rixon F. J., Everett R. D., Frame M. C., Mcgeoch D. J. 1986; Characterization of the IE110 gene of herpes simplex virus type 1. Journal of General Virology 67:2365–2380
    [Google Scholar]
  30. Preston V. G. 1981; Fine-structure mapping of herpes simplex virus type 1 temperature-sensitive mutations within the short repeat region of the genome. Journal of Virology 28:150–161
    [Google Scholar]
  31. Preston V. G., Davison A. J., Marsden H. S., Timbury M. C., Subak-Sharpe J. H., Wilkie N. M. 1978; Recombinants between herpes simplex virus types 1 and 2. Analysis of genome structure and expression of immediate early polypeptides. Journal of Virology 26:499–517
    [Google Scholar]
  32. Preston C. M., Cordingley M. G., Stow N. D. 1984; Analysis of DNA sequences which regulate the transcription of a herpes simplex virus immediate-early gene. Journal of Virology 50:708–716
    [Google Scholar]
  33. Rigby P. W. J., Dieckmann M., Rhodes C., Berg P. 1977; Labelling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. Journal of Molecular Biology 113:237–251
    [Google Scholar]
  34. Rixon F. J., Mcgeoch D. J. 1985; Detailed analysis of the mRNAs mapping in the short unique region of herpes simplex virus type 1. Nucleic Acids Research 13:953–974
    [Google Scholar]
  35. Rixon F. J., Campbell M. E. M., Clements J. B. 1984; A tandemly reiterated DNA sequence in the long repeat region of herpes simplex virus type 1 found in close proximity to immediate-early mRNA 1. Journal of Virology 52:715–718
    [Google Scholar]
  36. Ruley H. E., Fried M. 1983; Clustered illegitimate recombination events in mammalian cells involving very short sequence homologies. Nature; London: 304181–184
    [Google Scholar]
  37. Sacks W. R., Greene C. c., Aschman D. P., Schaffer P. A. 1985; Herpes simplex virus type 1 ICP27 is an essential regulatory protein. Journal of Virology 55:796–805
    [Google Scholar]
  38. Sears A. E., Halliburton I. W., Meignier B., Silver S., Roizman B. 1985; Herpes simplex virus 1 mutant deleted in alpha 22: growth and gene expression in permissive and restrictive cells and establishment of latency in mice. Journal of Virology 55:338–346
    [Google Scholar]
  39. Southern E. M. 1975; Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98:503–517
    [Google Scholar]
  40. Stow N. D. 1982; Localization of an origin of DNA replication within the TRS/IRS repeated region of the herpes simplex virus type 1 genome. EMBO Journal 1:863–867
    [Google Scholar]
  41. Stow N. D., Wilkie N. M. 1976; An improved technique for obtaining enhanced infectivity with herpes simplex virus type 1 DNA. Journal of General Virology 33:447–458
    [Google Scholar]
  42. Stow N. D., Stow E. S. 1986; Isolation and characterization of a herpes simplex virus type 1 mutant containing a deletion within the gene encoding the immediate early polypeptide Vmwl 10. Journal of General Virology 67:2571–2585
    [Google Scholar]
  43. Stow N. D., Subak-Sharpe J. H., Wilkie N. M. 1978; Physical mapping of herpes simplex virus type 1 mutations by marker rescue. Journal of Virology 28:182–192
    [Google Scholar]
  44. Stringer J. R. 1982; DNA sequence homology and chromosomal deletion at a site of SV40 DNA integration. Nature; London: 296363–366
    [Google Scholar]
  45. Umene K. 1986; Conversion of a fraction of the unique sequence to part of the inverted repeats in the S component of the herpes simplex type 1 genome. Journal of General Virology 67:1035–1048
    [Google Scholar]
  46. Whitton J. L., Rixon F. J., Easton A. J., Clements J. B. 1983; Immediate-early mRNA-2 of herpes simplex viruses types 1 and 2 is unspliced: conserved sequences around the 5′ and 3′ termini correspond to transcription regulatory sequences. Nucleic Acids Research 11:6271–6287
    [Google Scholar]
  47. Wilkie N. M. 1973; The synthesis and substructure of herpesvirus DNA: the distribution of alkali-labile single strand interruptions in HSV-1 DNA. Journal of General Virology 21:453–467
    [Google Scholar]
  48. Zweig M., Heilman C. Jr Rabin H., Hampar B. 1980; Shared antigenic determinants between two distinct classes of proteins in cells infected with herpes simplex virus. Journal of Virology 35:644–652
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-68-5-1339
Loading
/content/journal/jgv/10.1099/0022-1317-68-5-1339
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error