Characterization of Mycobacteriophage I8 and its Unrelatedness to Mycobacteriophages I1, I3 and I5 Free

Abstract

SUMMARY

Homology among the genomes of mycobacteriophages I1, I3, I5 and I8 has been studied. Based on restriction endonuclease cleavage patterns, dot blot hybridization and Southern blot hybridization analysis, the DNAs of phages I1, I3 and I5 have been shown to be homologous and indistinguishable, but entirely different from phage I8. Unlike the others, the I8 genome does not harbour any single-strand interruptions. The DNA is 43 kb in length with limited cyclic permutations and has a G + C content of 54%. The presence of 5-methylcytosine in I8 DNA was indicated from the restriction patterns of I and II. The number of sites and fragment sizes for several restriction enzymes on I8 DNA has been determined. Phage I8 has a replication cycle of 300 min, with a latent period of 180 min, a rise period of 120 min and a burst size of 100. The viability of phage I8 is significantly reduced by treatment with organic solvents.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-68-4-949
1987-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/68/4/JV0680040949.html?itemId=/content/journal/jgv/10.1099/0022-1317-68-4-949&mimeType=html&fmt=ahah

References

  1. Chaney S. M. J., Warren K. G., Kettyls J., Zbitnue A., Subak-Sharpe J. H. 1983; A comparative analysis of restriction enzyme digests of the DNA of herpes simplex virus isolated from genital and facial lesions. Journal of General Virology 64:357–371
    [Google Scholar]
  2. Cochran M. A., Faulkner P. 1983; Location of homologous DNA sequences interspersed at five regions in the baculovirus AcMNPV genome. Journal of Virology 45:961–970
    [Google Scholar]
  3. Dean D. H., Orrego J. c., Hutchison K. w., Halvorson H. O. 1976; New temperate bacteriophage for Bacillus subtilis, p 11. Journal of Virology 20:509–519
    [Google Scholar]
  4. Drapier J. c., Quetier F., Petit J. F. 1978; Characterization of Mycobacteriophage ATCC 11759. Unusual physicochemical properties of its DNA. European Journal of Biochemistry 91:163–170
    [Google Scholar]
  5. Gope M. L., Gopinathan K. P. 1982; Presence of lipids in mycobacteriophage 13. Journal of General Virology 59:131–138
    [Google Scholar]
  6. Jackson E. N., Jackson D. A., Deans R. J. 1978; EcoRI analysis of bacteriophage P22 DNA packaging. Journal of Molecular Biology 118:365–388
    [Google Scholar]
  7. Mandel M., Marmur J. 1968; Use of ultraviolet absorbance temperature profile for determining the guanine plus cytosine content of DNA. Methods in Enzymology 12B:195–206
    [Google Scholar]
  8. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: A Laboratory Manual New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  9. Menezes J., Pavilanis V. 1969; Properties of mycobacteriophage C2. Experientia 25:1112–1113
    [Google Scholar]
  10. Nagaraja V., Gopinathan K. P. 1980; Requirement for calcium ions in mycobacteriophage 13 DNA injection and propagation. Archives of Microbiology 124:249–254
    [Google Scholar]
  11. Parnes J. R., Velan B., Felsenfeld A., Ramanathan L., Ferrini U., Appella E., Seidman J. G. 1981; Mouse β2-microglobulin cDNA clones: a screening procedure for cDNA clones corresponding to rare mRNAs. Proceedings of the National Academy of Sciences U.S.A.: 782253–2257
    [Google Scholar]
  12. Ramsay N., Ritchie D. A. 1980; A physical map of the permuted genome of bacteriophage T1. Molecular and General Genetics 179:669–675
    [Google Scholar]
  13. Reddy A. B., Gopinathan K. P. 1986a; Characterization of genomic DNA of mycobacteriophage 13. Current Microbiology in press
    [Google Scholar]
  14. Reddy A. B., Gopinathan K. P. 1986b; Presence of random single-strand gaps in mycobacteriophage 13 DNA. Gene 44:227–234
    [Google Scholar]
  15. Rigby P. W. J., Dieckmann M., Rhodes C., Berg P. 1977; Labelling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. Journal of Molecular Biology 113:237–251
    [Google Scholar]
  16. Roberts I. M., Robinson D. J., Harrison B. D. 1984; Serological relationships and genome homologies among geminiviruses. Journal of General Virology 65:1723–1730
    [Google Scholar]
  17. Sadhu C., Dutta S., Gopinathan K. P. 1984; Influence of formamide on the thermal stability of DNA. Journal of Biosciences 6:817–821
    [Google Scholar]
  18. Sellers I., Tokunaga T. 1970; Inactivation of mycobacteriophages by lipid solvents. In Host-Virus Relationships in Mycobacterium, Nocardia and Actinomycetes, pp 134–143 Springfield: Charles C. Thomas;
    [Google Scholar]
  19. Soloff B. L., Rado T. A., Henry B. E., Bates J. H. 1978; Biochemical and morphological characterization of mycobacteriophage Rl. Journal of Virology 25:253–262
    [Google Scholar]
  20. Southern E. M. 1975; Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98:503–517
    [Google Scholar]
  21. Sunderraj C. V., Ramakrishnan T. 1971; Genetic studies in mycobacteria: isolation of auxotrophs and mycobacteriophages for Mycobacterium smegmatis and their use in transduction. Journal of the Indian Institute of Science 53:126–140
    [Google Scholar]
  22. Yabuki S., Fuke M., Wada A. 1971; The fine structures in melting curves of deoxyribonucleic acids of bacteriophage lambda. I. Journal of Biochemistry 69:191–207
    [Google Scholar]
  23. Yen W. S., Blake R. D. 1980; Analysis of high-resolution melting (thermal dispersion) of DNA. Methods. Biopolymers 19:681–700
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-68-4-949
Loading
/content/journal/jgv/10.1099/0022-1317-68-4-949
Loading

Data & Media loading...

Most cited Most Cited RSS feed