1887

Abstract

Summary

Varicella-zoster virus (VZV) and Epstein-Barr virus (EBV) are important human pathogens which belong to different subfamilies of the herpesviruses: the - and , respectively. Computer comparisons of the amino acid sequences of proteins predicted from the published complete VZV and EBV DNA sequences resulted in the detection of EBV counterparts to 29 of the 67 unique VZV genes. Conserved genes were detected only in the U component of each genome, and are located in three major regions, within which conserved genes are generally colinear. However, the three regions are arranged differently in the two genomes. These results make it possible in principle to propose the functions of EBV genes on the basis of the functions of their VZV counterparts. The data also allow identification of the types of events which may have occurred during divergence of VZV and EBV, as representatives of the - and , from a common ancestor.

Keyword(s): conserved genes , EBV and VZV
Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-68-4-1067
1987-04-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/68/4/JV0680041067.html?itemId=/content/journal/jgv/10.1099/0022-1317-68-4-1067&mimeType=html&fmt=ahah

References

  1. Arrand J. R., Rymo L. 1982; Characterization of the major Epstein-Barr virus-specific RNA in Burkitt lymphoma-derived cells. Journal of Virology 41:376–389
    [Google Scholar]
  2. Baer R., Bankier A. T., Biggin M. D., Deininger P. L., Farrell P. J., Gibson T. J., Hatfull G., Hudson G. S., Satchwell S. C., Seguin C., Tuffnell P. S., Barrell B. G. 1984; DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature; London: 310207–211
    [Google Scholar]
  3. Bishop M., Thompson E. 1984; Fast computer search for similar DNA sequences. Nucleic Acids Research 12:5471–5474
    [Google Scholar]
  4. Bodescot M., Perricaudet M. 1986; Epstein-Barr virus mRNAs produced by alternate splicing. Nucleic Acids Research 14:7103–7114
    [Google Scholar]
  5. Bodescot M., Chambraud B., Farrell P., Perricaudet M. 1984; Spliced mRNA from the IRI-U2 region of Epstein-Barr virus: presence of an open reading frame for a repetitive polypeptide. EMBO Journal 3:1913–1917
    [Google Scholar]
  6. Bodescot M., Brison O., Perricaudet M. 1986; An Epstein-Barr virus transcription unit is at least 84 kilobases long. Nucleic Acids Research 14:2611–2620
    [Google Scholar]
  7. Cho M-S., Jeang K-T., Hayward S. D. 1985; Localization of the coding region for an Epstein-Barr virus early antigen and inducible expression of this 60-kilodalton nuclear protein in transfected fibroblast cell lines. Journal of Virology 56:852–859
    [Google Scholar]
  8. Costa R. H., Draper K. G., Kelly T. J., Wagner E. K. 1985; An unusual spliced herpes simplex virus type 1 transcript with sequence homology to Epstein-Barr virus DNA. Journal of Virology 54:317–328
    [Google Scholar]
  9. Davison A. J., Mcgeoch D. J. 1986; Evolutionary comparisons of the S segments in the genomes of herpes simplex virus type 1 and varicella-zoster virus. Journal of General Virology 67:597–611
    [Google Scholar]
  10. Davison A. J., Scott J. E. 1986a; The complete DNA sequence of varicella-zoster virus. Journal of General Virology 67:1759–1816
    [Google Scholar]
  11. Davison A. J., Scott J. E. 1986b; DNA sequence of the major capsid protein gene of herpes simplex virus type 1. Journal of General Virology 67:2279–2286
    [Google Scholar]
  12. Davison A. J., Wilkie N. M. 1983; Location and orientation of homologous sequences in the genomes of five herpesviruses. Journal of General Virology 64:1927–1942
    [Google Scholar]
  13. Dayhoff M. o., Barker W. C., Hunt L. T. 1983; Establishing homologies in protein sequences. Methods in Enzymology 91:524–545
    [Google Scholar]
  14. De Turenne-Tessier M., Ooka T., De The G., Daillie J. 1986; Characterization of an Epstein-Barr virus- induced thymidine kinase. Journal of Virology 57:1105–1112
    [Google Scholar]
  15. Draper K. G., Devi-Rao G., Costa R. H., Blair E. D., Thompson R. L., Wagner E. K. 1986; Characterization of the genes encoding herpes simplex virus type 1 and type 2 alkaline exonucleases and overlapping proteins. Journal of Virology 57:1023–1036
    [Google Scholar]
  16. Gibbs J. S., Chiou H. C., Hall J. D., Mount D. W., Retondo M. J., Weller S. K. 1985; Sequence and mapping analyses of the herpes simplex virus DNA polymerase gene predict a C-terminal substrate binding domain. Proceedings of the National Academy of Sciences U.S.A: 827969–7973
    [Google Scholar]
  17. Gibson T., Stockwell P., Ginsburg M., Barrell B. 1984; Homology between two EBV early genes and HSV ribonucleotide reductase and 38K genes. Nucleic Acids Research 12:5087–5099
    [Google Scholar]
  18. Keller P. M., Davison A. J., Lowe R. S., Bennett C. D., Ellis R. W. 1986; Identification and structure of the gene encoding gpll, a major glycoprotein of varicella-zoster virus. Virology 152:181–191
    [Google Scholar]
  19. Kyte J., Doolittle R. f. 1982; A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology 157:105–132
    [Google Scholar]
  20. Littler E., Zeuthen J., Mcbride A. A., Trost Sorensen E., Powell K L., Walsh-Arrand J. E., Arrand J. R. 1986; Identification of an Epstein-Barr virus-coded thymidine kinase. EMBO Journal 5:1959–1966
    [Google Scholar]
  21. Mcgeoch D. J., Davison A. J. 1986; DNA sequence of the herpes simplex virus type 1 gene encoding glycoprotein gH, and identification of homologues in the genomes of varicella-zoster virus and Epstein-Barr virus. Nucleic Acids Research 14:4281–4292
    [Google Scholar]
  22. Mcgeoch D. J., Dolan A., Frame M. C. 1986; DNA sequence of the region in the genome of herpes simplex virus type 1 containing the exonuclease gene and neighbouring genes. Nucleic Acids Research 14:3435–3448
    [Google Scholar]
  23. Mcknight S. L. 1980; The nucleotide sequence and transcript map of the herpes simplex virus thymidine kinase gene. Nucleic Acids Research 8:5949–5964
    [Google Scholar]
  24. Matthews R. E. F. 1982; Classification and nomenclature of viruses. Intervirology 17:1–199
    [Google Scholar]
  25. Otsuka H., Kit S. 1984; Nucleotide sequence of the marmoset herpesvirus thymidine kinase gene and predicted amino acid sequence of thymidine kinase polypeptide. Virology 135:316–330
    [Google Scholar]
  26. Pellett P. E., Biggin M. D., Barrell B., Roizman B. 1985; Epstein-Barr virus genome may encode a protein showing significant amino acid and predicted secondary structure homology with glycoprotein B of herpes simplex virus 1. Journal of Virology 56:807–813
    [Google Scholar]
  27. Pustell J., Kafatos F. C. 1982; A high speed, high capacity homology matrix: zooming through SV40 and polyoma. Nucleic Acids Research 10:4765–4782
    [Google Scholar]
  28. Quinn J. P., Mcgeoch D. J. 1985; DNA sequence of the region in the genome of herpes simplex virus type 1 containing the genes for DNA polymerase and the major DNA binding protein. Nucleic Acids Research 13:8143–8163
    [Google Scholar]
  29. Sacks W. R., Greene C. C., Aschman D. P., Schaffer P. A. 1985; Herpes simplex virus type 1 ICP27 is an essential regulatory protein. Journal of Virology 55:796–805
    [Google Scholar]
  30. Sample J., Hummel M., Braun D., Birkenbach M., Kieff E. 1986; Nucleotide sequences of mRNAs encoding Epstein-Barr virus nuclear proteins : a probable transcriptional initiation site. Proceedings of the National Academy of Sciences U.S.A: 835096–5100
    [Google Scholar]
  31. Speck S. H., Strominger J. L. 1985; Analysis of the transcript encoding the latent Epstein-Barr virus nuclear antigen I: a potentially polycistronic message generated by long-range splicing of several exons. Proceedings of the National Academy of Sciences U.S.A: 828305–8309
    [Google Scholar]
  32. Stow N. D. 1982; Localization of an origin of DNA replication within the TRS/TRSrepeated region of the herpes simplex virus type 1 genome. EMBO Journal 1:863–867
    [Google Scholar]
  33. Stow N. D., Davison A. J. 1986; Identification of a varicella-zoster virus origin of DNA replication and its activation by herpes simplex virus type 1 gene products. Journal of General Virology 67:1613–1623
    [Google Scholar]
  34. Swain M. A., Galloway D. A. 1983; Nucleotide sequence of the herpes simplex virus type 2 thymidine kinase gene. Journal of Virology 46:1045–1050
    [Google Scholar]
  35. Taylor P. 1984; A fast homology program for aligning biological sequences. Nucleic Acids Research 12:447–455
    [Google Scholar]
  36. Weller S. K., Spadaro A., Schaffer J. E., Murray A. W., Maxam A. M., Schaffer P. A. 1985; Cloning, sequencing and functional analysis of orila herpes simplex virus type 1 origin of DNA synthesis. Molecular and Cellular Biology 5:930–942
    [Google Scholar]
  37. Williams M. V., Holliday J., Glaser R. 1985; Induction of a deoxyuridine triphosphate nucleotidohydrolase activity in Epstein-Barr virus-infected cells. Virology 142:326–333
    [Google Scholar]
  38. Yates J., Warren N., Reisman D., Sugden B. 1984; A cis-acting element from the Epstein-Barr viral genome that permits stable replication of recombinant plasmids in latently infected cells. Proceedings of the National Academy of Sciences, U.S.A.: 813806–3810
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-68-4-1067
Loading
/content/journal/jgv/10.1099/0022-1317-68-4-1067
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error