1887

Abstract

SUMMARY

A III cleavage map of the genome DNA of a new isolate of human cytomegalovirus (HCMV), strain Tanaka, was constructed by cosmid cloning and Southern blot hybridization of virion DNA. The genome was found to be unique in that its long (L) component was composed of two subsegments, L1 and L2, and subsegment L2 underwent inversion relative to L1 at high frequency. In addition to the normal inversions of the L and short (S) components, this produced eight genome isomers. The novel invertible subsegment was flanked by an inverted sequence distinct from the inversion-specific sequence present in the terminal and junction regions of the genome.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-68-3-765
1987-03-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/jgv/68/3/JV0680030765.html?itemId=/content/journal/jgv/10.1099/0022-1317-68-3-765&mimeType=html&fmt=ahah

References

  1. Collins J., Brüning H. J. 1978; Plasmids usable as gene-cloning vectors in an in vitro packaging by coliphage: cosmids. Gene 4:85–107
    [Google Scholar]
  2. Demarchi J. M., Blankenship M. L., Brown G. D. 1978; Size and complexity of human cytomegalovirus DNA. Virology 89:643–646
    [Google Scholar]
  3. Fleckenstein B., Müller I., Collins J. 1983; Cloning of the complete human cytomegalovirus genome in cosmids. Gene 18:39–46
    [Google Scholar]
  4. Furukawa T. 1984; A variant of human cytomegalovirus derived from a persistently infected culture. Virology 137:191–194
    [Google Scholar]
  5. Geelen J. L. M. C., Walig C., Wertheim P., Van Der Noordaa J. 1978; Human cytomegalovirus DNA. I Molecular weight and infectivity. Journal of Virology 26:813–816
    [Google Scholar]
  6. Hohn B., Collins J. 1980; A small cosmid for efficient cloning of fragments. Gene 11:291–298
    [Google Scholar]
  7. Ihara S., Hirai K., Watanabe Y. 1978; Temperature-sensitive mutants of human cytomegalovirus. Virology 84:218–221
    [Google Scholar]
  8. Ihara S., Takekoshi M., Watanabe Y. 1986; Cleavage maps of human cytomegalovirus genome (strain Towne) determined by the use of cosmid cloning system. Archives of Virology 88:241–250
    [Google Scholar]
  9. Kilpatrick B. A., Huang E.-S. 1977; Human cytomegalovirus genome: partial denaturation map and organization of genome sequences. Journal of Virology 24:261–276
    [Google Scholar]
  10. Lafemina R. L., Hayward G. S. 1980; Structural organization of the DNA molecules from human cytomegalovirus. In Animal Virus Genetics pp 39–55 Fields B. N., Jaenisch R. Edited by New York: Academic Press;
    [Google Scholar]
  11. Locker H., Frenkel N. 1979; Structure and origin of defective genomes contained in serially passaged herpes simplex virus type 1 (Justin). Journal of Virology 29:1069–1077
    [Google Scholar]
  12. Locker H., Frenkel N., Halliburton G. S. 1982; Structure and expression of class II defective herpes simplex virus genomes encoding infected cell polypeptide number 8. Journal of Virology 43:574–593
    [Google Scholar]
  13. Lomniczi B., Blankenship M. L., Ben-Porat T. 1980; Deletions in the genomes of pseudorabies virus vaccine strains and existence of four isomers of the genomes. Journal of Virology 49:970–979
    [Google Scholar]
  14. Mocarski E. s., Roizman B. 1981; Site-specific inversion sequence of the herpes simplex virus genome: domain and structural features. Proceedings of the National Academy of Sciences U.S.A.: 787047–7051
    [Google Scholar]
  15. Mocarski E. S., Roizman B. 1982a; Herpesvirus-dependent amplification and inversion of cell-associated viral thymidine kinase gene flanked by viral a sequence and linked to an origin of viral DNA replication. Proceedings of the National Academy of Sciences U.S.A.: 795626–5630
    [Google Scholar]
  16. Mocarski E. S., Roizman B. 1982b; Structure and role of the herpes simplex virus DNA termini inversion, circularization and generation of virion DNA. Cell 31:89–97
    [Google Scholar]
  17. Mocarski E. S., Post L. E., Roizman B. 1980; Molecular engineering of the herpes simplex virus genome: insertion of a second L-S junction into the genome causes additional genome inversions. Cell 22:243–255
    [Google Scholar]
  18. Pogue-Geile K. L., Lee G. T.-Y., Spear P. G. 1985; Novel rearrangements of herpes simplex virus DNA sequences resulting from duplication of a sequence within the unique region of the L component. Journal of Virology 53:456–461
    [Google Scholar]
  19. Rigby P. W. J., Dieckmann M., Rhodes C., Berg P. 1977; Labelling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. Journal of Molecular Biology 113:65–73
    [Google Scholar]
  20. Rixon F. J., Ben-Porat T. 1979; Structural evolution of the DNA of pseudorabies defective viral particles. Virology 97:151–163
    [Google Scholar]
  21. Roizman B., Ben-Porat T. 1979; The organization of the herpes simplex virus genome. Annual Review of Genetics 13:25–57
    [Google Scholar]
  22. Smith H. O., Birnstiel M. L. 1976; A simple method for DNA restriction site mapping. Nucleic Acids Research 3:2387–2399
    [Google Scholar]
  23. Smiley J. R., Fong B. S., Leung W. 1981; Construction of a double-jointed herpes simplex viral DNA molecule: inverted repeats promote deletions. Virology 113:345–362
    [Google Scholar]
  24. Spaete R. R., Mocarski E. S. 1985; The a sequence of the cytomegalovirus genome functions as a cleavage/packaging signal for herpes simplex virus defective genomes. Journal of Virology 54:817–824
    [Google Scholar]
  25. Stinski M. F., Mocarski E. F., Thomsen D. R., Urbanowski M. L. 1979; DNA of human cytomegalovirus: size heterogeneity and defectiveness resulting from serial undiluted passage. Journal of Virology 31:231–239
    [Google Scholar]
  26. Tamashiro J. c., Filpula D., Friedmann T., Spector D. H. 1984; Structure of the heterogeneous L-S junction region of human cytomegalovirus strain AD169 DNA. Journal of Virology 52:541–548
    [Google Scholar]
  27. Vlazny D. A., Kwong A., Frenkel N. 1982; Site-specific cleavage/packaging of herpes simplex virus DNA and the selective maturation of nucleocapsids containing full-length viral DNA. Proceedings of the National Academy of Sciences U.S.A.: 791423–1427
    [Google Scholar]
  28. Wadsworth S., Jacob R. J., Roizman B. 1975; Anatomy of herpes simplex virus DNA. II. Size, composition, and arrangement of inverted terminal repetitions. Journal of Virology 15:1487–1497
    [Google Scholar]
  29. Weststrate M. W., Geelen J.L, Wertheim P. M. E., Van Der Noordaa J. 1983; Comparison of the physical maps of the DNAs of two cytomegalovirus strains. Journal of General Virology 64:47–55
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-68-3-765
Loading
/content/journal/jgv/10.1099/0022-1317-68-3-765
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error