1887

Abstract

SUMMARY

Herpes simplex virus type 1 (HSV-1) infection of human fibroblast cells grown in culture induces reorganization of the cytoskeleton fibrillar structures. Normal transport and insertion of HSV glycoproteins into the plasma membrane of the cells depend on the integrity of the microtubules. The natural host cells for HSV are epithelial cells, and an epithelial cell line established from rat palate was used in the present study. The effect of virus on the structure of the intermediate filaments and especially on the keratin proteins was studied. Two-dimensional gel electrophoresis of total cell extracts identified in uninfected cells two major acidic keratin proteins with apparent molecular weights of 44000 (44K) and 48K (pI 5·45 to 5·30, 5·50 to 5·35). A new keratin protein of 46K (pI 5·40 to 5·25) appeared in infected cells between 8 h and 12 h post-infection. Pulse-chase identified the 46K protein as a processed form of the 48K keratin component, which was also cleaved in uninfected cells grown in the presence of cycloheximide. Partial proteolysis of the 46K and 48K keratins with V8 protease showed that the 48K and the 46K proteins differed in only one oligopeptide. The significance of the changed keratin composition of HSV- infected cells is discussed.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-68-3-737
1987-03-01
2022-01-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/68/3/JV0680030737.html?itemId=/content/journal/jgv/10.1099/0022-1317-68-3-737&mimeType=html&fmt=ahah

References

  1. Bedows E., Welsh J. M. 1983; Fate of microfilaments in Vero cells infected with measles virus and herpes simplex virus type 1. Journal of Virology 70:712–719
    [Google Scholar]
  2. Bravo R., Small J. V., Fey S.L, Celis J. J. 1982; Architecture and polypeptide composition of HeLa cytoskeletons. Modification of cytoarchitectural polypeptides during mitosis. Journal of Molecular Biology 154:121–143
    [Google Scholar]
  3. Cleveland D. W., Fischer S. G., Kirschner M. W., Laemmli U. K. 1977; Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis. Journal of Biological Chemistry 252:1102–1106
    [Google Scholar]
  4. Dale B. A., Lonsdale-Eccles J. D., Lynley A. M. 1982; Two dimensional analysis of proteins of rat oral epithelia and epidermis. Archives of Oral Biology 27:529–633
    [Google Scholar]
  5. Dustin P. 1978 Microtubules Berlin, Heidelberg & New York: Springer-Verlag;
    [Google Scholar]
  6. Fagraeus A., Tyrrell D. L. J., Norberg R., Norrby E. 1978; Actin filaments in paramyxovirus-infected human fibroblasts studied by indirect immunofluorescence. Archives of Virology 57:291–296
    [Google Scholar]
  7. Fenwick M., McMenamin M. M. 1984; Early virion-associated suppression of cellular protein synthesis by herpes simplex virus is accompanied by inactivation of mRNA. Journal of General Virology 65:1225–1228
    [Google Scholar]
  8. Francke W. W., Schiller D. L., Moll R., Winther S., Schmid E., Engelbrecht I. 1981; Diversity of cytokeratins. Differentiation specific expression of cytokeratin polypeptides in epithelial cells and tissues. Journal of Molecular Biology 153:933–959
    [Google Scholar]
  9. Fuchs E., Green H. 1979; Multiple keratins of cultured human epidermal cells are translated from different mRNA molecules. Cell 17:573–582
    [Google Scholar]
  10. Fuchs E., Green H. 1980; Changes in keratin gene expression during terminal differentiation of the k�ratinocyte. Cell 19:1033–1042
    [Google Scholar]
  11. Giuffre R. M., Tovell D. R., Kay C. M., Tyrell D. L. J. 1982; Evidence for an interaction between the membrane protein of a paramyxovirus and actin. Journal of Virology 42:963–968
    [Google Scholar]
  12. Heeg U., Haase W., Brauer D., Falke D. 1981; Microtubules and microfilaments in HSV-infected rabbit-kidney cells. Archives of Virology 70:233–246
    [Google Scholar]
  13. Holland T. C., Sandri-Goldin R. M., Holland L. E., Marlin S. D., Levine M. 1983; Physical mapping of the mutation in an antigenic variant of herpes simplex virus type 1 by use of an immunoreactive plaque assay. Journal of Virology 46:649–652
    [Google Scholar]
  14. Hronis T. S., Steinberg M. L., Defendi V., Sun T.-T. 1984; Simple epithelial nature of some simian virus-40- transferred human epidermal keratinocytes. Cancer Research 44:5797–5804
    [Google Scholar]
  15. Jepsen A., MacCallum D. A., Lillie J. H. 1980; Fine structure of subcultivated stratified squamous epithelium. Experimental Cell Research 125:141–152
    [Google Scholar]
  16. Lehto V.-P., Virtanen I., Kurki P. 1978; Intermediate filaments anchor the nuclei in nuclear monolayers of cultured fibroblasts. Nature; London: 272175–177
    [Google Scholar]
  17. Menko A. S., Toyama Y., Boettiger D., Holzer H. 1983; Altered cell spreading in cytochalasin B: a possible role for intermediate filaments. Molecular and Cellular Biology 3:113–125
    [Google Scholar]
  18. Meyer R. K., Burger M. M., Tschannen R., Schafer R. 1981; Actin filament bundles in vaccinia virus infected fibroblasts. Archives of Virology 67:11–18
    [Google Scholar]
  19. Moll R., Franke W. W., Schiller D. L., Geiger B., Krepler R. 1982; The catalogue of human cytokeratin polypeptides: patterns of expression of cytokeratins in normal epithelia, tumors and cultured cells. Cell 31:11–24
    [Google Scholar]
  20. Morse L. S., Pereira L., Roizman B., Schaffer P. A. 1978; Anatomy of herpes simplex virus (HSV) DNA. X. Mapping of viral genes by analysis of polypeptides and functions specified by HSV-1 × HSV-2 recombinants. Journal of Virology 26:389–410
    [Google Scholar]
  21. Murti K. G., Goorha R. 1983; Interaction of frog virus 3 with the cytoskeleton. I. Altered organization of microtubules, intermediate filaments, and microfilaments. Journal of Cell Biology 96:1248–1257
    [Google Scholar]
  22. Norrild B., Andersen Å. B., Feldborg R. 1985; Crossed immunoelectrophoretic analysis of herpes simplex virus type 2 proteins. Characterization of antigen-5. Archives of Virology 85:95–108
    [Google Scholar]
  23. Norrild B., Lehto V.-P., Virtanen 1. 1986; Organization of cytoskeleton elements during herpes simplex virus type 1 infection of human fibroblasts: an immunofluorescence study. Journal of General Virology 67:97–105
    [Google Scholar]
  24. O’Farrell P. Z., Goodman H. M., O’Farrell P. H. 1977; High resolution two-dimensional electrophoresis of basic as well as acidic proteins. Cell 12:1133–1141
    [Google Scholar]
  25. Osborn M., Weber K. 1983; Biology of disease. Tumor diagnosis by intermediate filament typing: a novel tool for surgical pathology. Laboratory Investigation 4:372–394
    [Google Scholar]
  26. Pollard T. D., Fujiwara K., Niedermann R., Maupin-Szamier P. 1976 In Cell Motility (Cold Spring Harbor Conferences on Cell Proliferation 3 pp 689–724 Goldman R. D., Pollard T. D., Rosenbaum J. L. Edited by New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  27. Rutter G., Mannweiler K. 1977; Alterations of actin-containing structures in BHK21 cells infected with Newcastle disease virus and vesicular stomatitis virus. Journal of General Virology 37:233–242
    [Google Scholar]
  28. Schliwa M. 1984; Mechanisms of intracellular organelle transport. In Cell and Muscle Motility 5 pp 1–81 Dowben R. W., Shay J. W. Edited by New York: Plenum Press;
    [Google Scholar]
  29. Sharpe A. H., Chen L. B., Fields B. N. 1982; The interaction of mammalian reoviruses with the cytoskeleton of monkey kidney CV-1 cells. Virology 120:399–411
    [Google Scholar]
  30. Shuler C. F., Schwartz S. A. 1982; Keratin protein maturation during rat palatal development. Journal of Cell Biology 95:63a
    [Google Scholar]
  31. Staquet M. J., Viac J., Thivolet J. 1981; Keratin polypeptide modifications induced by human papilloma viruses (HPV). Archives of Dermatological Research 271:83–90
    [Google Scholar]
  32. Sun T.-T., Green H. 1978a; Immunofluorescent staining of keratin fibers in cultured cells. Cell 14:469–476
    [Google Scholar]
  33. Sun T.-T., Green H. 1978b; Keratin filaments of cultured human epidermal cells. Journal of Biological Chemistry 253:2053–2060
    [Google Scholar]
  34. Sun T.-T., Eichner R., Nelson W. G., Tseng S. C. G., Weiss R. A., Jarvinen M., Woodcock-Mitchell I. 1983; Keratin classes: molecular markers for different types of epithelial differentiation. Journal of Investigative Dermatology 81: supplement 1 1095–1155
    [Google Scholar]
  35. Sun T.-T., Eichner R., Schermer A., Cooper D., Nelson W. G., Weiss R. A. 1984; Classification, expression, and possible mechanisms of evolution of mammalian epithelial keratins: a unifying model. Cancer Cells 1:169–176
    [Google Scholar]
  36. Sydiskis R. J., Roizman B. 1966; Polysomes and protein synthesis in cells infected with a DNA virus. Science 153:76–78
    [Google Scholar]
  37. Tilney L. G. 1983; Interaction between actin filaments and membranes gives spatial organization to cells. Modem Cell Biology 2:163–199
    [Google Scholar]
  38. Weber K., Osborn M. 1981; Microtubule and intermediate filament networks in cells viewed by immunofluorescence microscopy. In Cytoskeletal Elements and Plasma Membrane Organization pp 1–53 Poste G., Nicolson G. L. Edited by Amsterdam: Elsevier/North-Holland;
    [Google Scholar]
  39. Woodcock-Mitchell J., Eichner R., Nelson W. G., Sun T.-T. 1982; Immunolocalization of keratin polypeptides in human epidermis using monoclonal antibodies. Journal of Cell Biology 95:580–588
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-68-3-737
Loading
/content/journal/jgv/10.1099/0022-1317-68-3-737
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error