Herpes simplex virus type 1 (HSV-1) infection of human fibroblast cells grown in culture induces reorganization of the cytoskeleton fibrillar structures. Normal transport and insertion of HSV glycoproteins into the plasma membrane of the cells depend on the integrity of the microtubules. The natural host cells for HSV are epithelial cells, and an epithelial cell line established from rat palate was used in the present study. The effect of virus on the structure of the intermediate filaments and especially on the keratin proteins was studied. Two-dimensional gel electrophoresis of total cell extracts identified in uninfected cells two major acidic keratin proteins with apparent molecular weights of 44000 (44K) and 48K (pI 5.45 to 5.30, 5.50 to 5.35). A new keratin protein of 46K (pI 5.40 to 5.25) appeared in infected cells between 8 h and 12 h post-infection. Pulse-chase experiments identified the 46K protein as a processed form of the 48K keratin component, which was also cleaved in uninfected cells grown in the presence of cycloheximide. Partial proteolysis of the 46K and 48K keratins with V8 protease showed that the 48K and the 46K proteins differed in only one oligopeptide. The significance of the changed keratin composition of HSV-infected cells is discussed.


Article metrics loading...

Loading full text...

Full text loading...


Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error