1887

Abstract

Summary

About 45% of the rotavirus SA11 VP3 gene was inserted into a thermoinducible expression plasmid under the control of phage lambda P promoter. The primary translation product predicted on the basis of the plasmid construction was a hybrid protein in which the 98 amino-terminal amino acids of phage MS2 polymerase were followed by amino acids 42 to 387 of the VP3 protein, which included the region containing the cleavage sites associated with trypsin enhancement of infectivity. On induction, a polypeptide that had the expected mol. wt. and contained VP3-related amino acid sequences as judged by immunological criteria, was synthesized to a level representing about 15% of the total bacterial protein. When a bacterial lysate enriched for the fusion polypeptide was injected into mice, it induced antibodies which inhibited haemagglutination and neutralized SA11 rotavirus infectivity.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-68-3-633
1987-03-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/68/3/JV0680030633.html?itemId=/content/journal/jgv/10.1099/0022-1317-68-3-633&mimeType=html&fmt=ahah

References

  1. Arias c. F., López s., Espejo R. 1982a; Gene protein products of SA11 simian rotavirus genome. Journal of Virology 41:42–50
    [Google Scholar]
  2. Arias C. F., López s., Espejo R. 1982b; Identification of the RNA segments encoding some structural polypeptides of Nebraska calf diarrhea virus. Revista Latino-americana de Microbiologia 24:47–54
    [Google Scholar]
  3. Arias C. F., López s., Bell J. R., Strauss J. H. 1984; Primary structure of the neutralization antigen of simian rotavirus SAIl as deduced from eDNA sequence. Journal of Virology 50:657–661
    [Google Scholar]
  4. Bastardo J. W., Mckimm-Breschkin J. L., Sonza S., Mercer L. D., Holmes I. H. 1981; Preparation and characterization of antisera to electrophoretically purified SA 11 virus polypeptides. Infection and Immunity 34:641–647
    [Google Scholar]
  5. Bishop R. F., Davidson G. P., Holmes I. H. 1973; Virus particles in epithelial cells of duodenal mucosa from children with viral gastroenteritis. Lancet ii:1281–1283
    [Google Scholar]
  6. Both G. w., Mattick J. S., Bellamy A. R. 1983; The serotype-specific glycoprotein of simian-11 rotavirus: coding assignment and gene sequence. Proceedings of the National Academy of Sciences U.S.A.: 803091–3095
    [Google Scholar]
  7. Clark s. M., Roth J. R., Clark M. L., Barnett B. B., Spendlove R. s. 1981; Trypsin enhancement of rotavirus infectivity: mechanism of infection. Journal of Virology 39:816–822
    [Google Scholar]
  8. Cowing D. W., Bardwell J. C. A., Craig E. A., Woolford C., Hendrix R. W., Gross C. A. 1985; Consensus sequence for Escherichia coli heat shock promoters. Proceedings of the National Academy of Sciences U.S.A.: 822679–2683
    [Google Scholar]
  9. Ericson B. L., Graham D. Y., Mason B. B., Estes M. K. 1982; Identification, synthesis, and modification of simian rotavirus SA11 polypeptides in infected cells. Journal of Virology 42:825–839
    [Google Scholar]
  10. Ericson B. L., Graham D. Y., Mason B. B., Hanssen H. H., Estes M. K. 1983; Two types of glycoprotein precursors are produced by the simian rotavirus SA11. Virology 127:320–332
    [Google Scholar]
  11. Espejo R. T., López s., Arias c. F. 1981; Structural polypeptides of simian rotavirus SA11 and the effect of trypsin. Journal of Virology 37:156–160
    [Google Scholar]
  12. Estes M. K., Graham D. Y., Arias C. F. 1981; Proteolytic enhancement of rotavirus infectivity: molecular mechanisms. Journal of Virology 39:879–888
    [Google Scholar]
  13. Fiers W., Contreras R., Duerinck F., Haegeman G., Iserentant D., Merregaert J., Minjou W., Molemans F., Raeymaekers A., Van Den Berghe A., Volckaert G., Ysebaert M. 1976; Complete nucleotide sequence of bacteriophage MS2 RNA : primary and secondary structure of the replicase gene. Nature; London: 260500–507
    [Google Scholar]
  14. Flewett T. H., Woode G. N. 1978; The rotaviruses. Archives of Virology 57:1–23
    [Google Scholar]
  15. Greenberg H. B., Flores J., Kalica A. R., Wyatt R. G., Jones R. 1983a; Gene coding assignments for growth restriction, neutralization and subgroup specificities of the W and DS-1 strains of human rotavirus. Journal of General Virology 64:313–320
    [Google Scholar]
  16. Greenberg H. B., Valdesuso J., Van Wyke K., Midthun K., Walsh M., Mcauliffe V., Wyatt R. G., Kalica A. R., Flores J. 1983b; Production and preliminary characterization of monoclonal antibodies directed at two surface proteins of rhesus rotavirus. Journal of Virology 47:267–275
    [Google Scholar]
  17. Holmes i. H. 1983; Rotaviruses. In The Reoviridae pp 359–423 Joklik W. K. Edited by New York: Plenum Press;
    [Google Scholar]
  18. Ikegami N., Akatani K. 1984; Characterization of outer capsid proteins of rotaviruses using monoclonal antibodies. Abstracts, Sixth International Congress of Virology W22-2. p. 209
    [Google Scholar]
  19. Kalica A. R., Flores j., Greenberg H. B. 1983; Identification of the rotaviral gene that codes for hemagglutination and protease-enhanced plaque formation. Virology 125:194–205
    [Google Scholar]
  20. Kleid D. G., Yansura D., Small B., Dowbenko D., Moore D. M., Grubman M. I., Mckercher P. D., Morgan D. o., Robertson B. H., Bachrach H. L. 1981; Cloned viral protein vaccine for foot-and-mouth disease: responses in cattle and swine. Science 214:1125–1129
    [Google Scholar]
  21. Laemmli u. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature; London: 227680–685
    [Google Scholar]
  22. López s., Arias c. F., Bell J. R., Strauss j. H., Espejo R. T. 1985; Primary structure of the cleavage site associated with trypsin enhancement of rotavirus SA11 infectivity. Virology 144:11–19
    [Google Scholar]
  23. López s., Arias c. F., Méndez E., Espejo R. T. 1986; Conservation in rotaviruses of the protein region containing the two sites associated with trypsin enhancement of infectivity. Virology 154:224–227
    [Google Scholar]
  24. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: A Laboratory Manual New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  25. Mason B. B., Graham D. Y., Estes M. K. 1983; Biochemical mapping of the simian rotavirus SA11 genome. Journal of Virology 46:413–423
    [Google Scholar]
  26. Matsuno s., Inouye s. 1983; Purification of an outer capsid glycoprotein of neonatal calf diarrhea virus and preparation of its antisera. Infection and Immunity 39:155–158
    [Google Scholar]
  27. Matsuno s., Inouye S., Kono R. 1977; Plaque assay of neonatal calf diarrhea virus and the neutralizing antibody in human sera. Journal of Clinical Microbiology 5:1–4
    [Google Scholar]
  28. Maxam A. M., Gilbert W. 1980; Sequencing end-labeled DNA with base-specific chemical cleavages. Methods in Enzymology 65:499–560
    [Google Scholar]
  29. Mott J. E., Grant R. A., Ho Y., Platt T. 1985; Maximizing gene expression from plasmid vectors containing the λ PL promoter: strategies for overproducing transcription termination factor p . Proceedings of the National Academy of Sciences U.S.A.: 8288–92
    [Google Scholar]
  30. Offit P. A., Shaw R. D. 1986; Passive protection against rotavirus-induced diarrhea by monoclonal antibodies to surface proteins VP3 and VP7. Journal of Virology 58:700–703
    [Google Scholar]
  31. Remaut E., Stanssens P., Fiers W. 1981; Plasmid vectors for high-efficiency expression controlled by the PLpromoter of coliphage lambda. Gene 15:81–93
    [Google Scholar]
  32. Rodger S. M., Holmes I. H. 1979; Comparison of the genomes of simian, bovine, and human rotaviruses by gel electrophoresis and detection of genomic variation among bovine isolates. Journal of Virology 30:839–846
    [Google Scholar]
  33. Schlesinger M. J., Ashburner M., Tissiers A. editor 1982 Heat Shock: From Bacteria to Man New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  34. Shaw R. D., Stoner-MA D. L., Estes M. K., Greenberg H. B. 1985; Specific enzyme-linked immunoassay for rotavirus serotypes 1 and 3. Journal of Clinical Microbiology 22:286–291
    [Google Scholar]
  35. Sutcliffe J. G. 1978; Complete nucleotide sequence of the Escherichia coli plasmid pBR322. Cold Spring Harbor Symposia on Quantitative Biology 43:77–90
    [Google Scholar]
  36. Taniguchi K., Urasawa S., Urasawa T. 1985; Preparation and characterization of neutralizing monoclonal antibodies with different reactivity patterns to human rotaviruses. Journal of General Virology 66:1045–1053
    [Google Scholar]
  37. Tsang V. C. W., Peralta J. M., Simons A. R. 1983; Enzyme-linked immunoelectrotransfer blot techniques (EITB) for studying the specificities of antigens and antibodies separated by gel electrophoresis. Methods in Enzymology 92:377–391
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-68-3-633
Loading
/content/journal/jgv/10.1099/0022-1317-68-3-633
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error