1887

Abstract

Summary

We have characterized a set of 15 monoclonal antibodies to pl9 one of the internal proteins of avian sarcoma and leukaemia viruses. All the antibodies work in immune precipitations as well as in immunoblotting, though with different efficiencies. We have developed a simple epitope mapping technique, which uses partial chemical cleavages at methionine or tryptophan residues followed by immunoblotting from SDS-polyacrylamide gels, to localize the epitopes of nine of these antibodies. The epitopes fall into at least four classes. The mapping procedure should also be useful for other antigens of known primary structure.

Keyword(s): ASLV , epitope mapping and p19 gag
Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-68-12-3177
1987-12-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/68/12/JV0680123177.html?itemId=/content/journal/jgv/10.1099/0022-1317-68-12-3177&mimeType=html&fmt=ahah

References

  1. Eisenberg R. J., Long D., Ponce De Leon M., Matthews J. T., Spear P. G., Gibson M. G., Lasky L. A., Berman P., Golub E., Cohen G. H. 1985; Localization of epitopes of herpes simplex virus type 1 glycoprotein D. Journal of Virology 53:634–644
    [Google Scholar]
  2. Galvin N. J., Dixit V. M., O’Rourke K. M., Santoro S. A., Grant G. A., Frazier W. A. 1985; Mapping of epitopes for monoclonal antibodies against platelet thrombospondin with electron microscopy and high sensitivity amino acid sequencing. Journal of Cellular Biology 101:1434–1441
    [Google Scholar]
  3. Ingman-Baker J., Hinze E., Levy J. G., Pawson T. 1984; Monoclonal antibodies to the transforming protein of Fujinami avian sarcoma virus discriminate between different fps-encoded proteins. Journal of Virology 50:572–578
    [Google Scholar]
  4. Jemmerson R., Paterson Y. 1986; Mapping epitopes on a protein antigen by the proteolysis of antigen-antibody complexes. Nature; London: 2321001–1004
    [Google Scholar]
  5. Kurth R., Tanaka T., Moelling K. 1985; Isolation of monoclonal antibodies specific for Rous sarcoma virus structural, polymerase, and transforming proteins and their use for the study of mutant virus-infected cells. Journal of General Virology 66:827–837
    [Google Scholar]
  6. Leis J. P., Mcginnis J., Green R. W. 1978; Rous sarcoma virus pi9 binds to specific double-stranded regions of viral RNA: effect of pl9 on cleavage of viral RNA by RNase III. Virology 84:87–98
    [Google Scholar]
  7. Leis J. P., Scheible P., Smith R. E. 1980; Correlation of RNA binding affinity of avian oncornavirus pl9 proteins with the extent of processing of virus genome RNA in cells. Journal of Virology 35:722–731
    [Google Scholar]
  8. Lischwe M. A., Ochs D. 1982; A new method for partial peptide mapping using N-chlorosuccinimide/urea and peptide silver staining in sodium dodecyl sulfate-polyacrylamide gels. Analytical Biochemistry 127:453–457
    [Google Scholar]
  9. Olsen M. 1986 Differential effects of avian myeloblastosis virus infection on cells of the granulocyte and macrophage lineages Ph.D. thesis University of Pennsylvania:
    [Google Scholar]
  10. Parsons S. J., Mccarley D. J., Raymond V. W., Parsons J. T. 1986; Localization of conserved and nonconserved epitopes within the Rous sarcoma virus-encoded src protein. Journal of Virology 58:755–758
    [Google Scholar]
  11. Pepinsky R. B., Vogt V. M. 1984; Fine structure analyses of lipid-protein interactions of gag protein pl9 of the avian sarcoma and leukemia viruses by cyanogen bromide mapping. Journal of Virology 52:145–153
    [Google Scholar]
  12. Pepinsky R. B., Mattaliano R. J., Vogt V. M. 1986; Structure and processing of the p2 region of avian sarcoma and leukemia virus gag precursor proteins. Journal of Virology 58:50–58
    [Google Scholar]
  13. Pierschbacher M. D., Hayman E. G., Ruoslahti E. 1981; Location of the cell-attachment site in fibronectin with monoclonal antibodies and proteolytic fragments of the molecule. Cell 26:259–267
    [Google Scholar]
  14. Pinter A., Honnen W. J., Tung J.-S., O Donnell P. V., Hammerling U. 1982; Structural domains of endogenous murine leukemia virus gp70s containing specific antigenic determinants defined by monoclonal antibodies. Virology 116:499–516
    [Google Scholar]
  15. Polakova K., Russ G. 1983; Production and characterization of monoclonal antibodies against avianmyeloblastosis virus. Neoplasma 30:625–635
    [Google Scholar]
  16. Reinfach F. C., Fischman D. A. 1985; Recombinant DNA approach for defining the primary structure of monoclonal antibody epitopes. The analysis of a conformation-specific antibody to myosin light chain 2. Journal of Molecular Biology 181:411–422
    [Google Scholar]
  17. Schwartz D. E., Tizard R., Gilbert W. 1983; Nucleotide sequence of Rous sarcoma virus. Cell 32:853–869
    [Google Scholar]
  18. Weiss R., Teich N., Varmus H., Coffin J. editor 1982 Molecular Biology of Tumor Viruses: RNA Tumor Viruses New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  19. Yurchenco P. D., Speicher D. W., Morrow J. S., Knowles W. J., Marchesi V. T. 1982; Monoclonal antibodies as probes of domain structure of the spectrin alpha subunit. Journal of Biological Chemistry 257:9102–9107
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-68-12-3177
Loading
/content/journal/jgv/10.1099/0022-1317-68-12-3177
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error