Herpes Simplex Virus Genes Involved in Latency Free

Abstract

Summary

The properties of temperature-sensitive (), insertion or deletion mutants of herpes simplex virus (HSV) were investigated in an model system for latency. The studies defined virus gene products required for establishment of latency and for reactivation of latent virus. All mutants tested established latency in human foetal lung fibroblasts and could be reactivated by intertypic superinfection with HSV or with human cytomegalovirus. Two mutants of HSV type 1 used in these studies, K and in 1411, failed to synthesize active immediate early (IE) polypeptide Vmw 175 and were blocked at a very early stage of the virus replication cycle, showing that, at most, only limited gene expression is necessary for the establishment of latency. Mutant 1403, which lacks the gene encoding IE polypeptide Vmw 110, established latency as efficiently as wild-type HSV. Latent HSV type 2 was reactivated by superinfection with K or in 1411 but not with 1403, suggesting that polypeptide Vmw 110, which is known to regulate gene expression by trans-activation, is required for reactivation in the system.

Keyword(s): HSV , in vitro model and latency
Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-68-12-3009
1987-12-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/68/12/JV0680123009.html?itemId=/content/journal/jgv/10.1099/0022-1317-68-12-3009&mimeType=html&fmt=ahah

References

  1. Al-Saadi S. A., Clements G. B., Subak-Sharpe J. H. 1983; Viral genes modify herpes simplex virus latency both in mouse footpad and sensory ganglia. Journal of General Virology 64:1175–1179
    [Google Scholar]
  2. Baringer J. R., Swoveland P. 1973; Recovery of herpes-simplex virus from human trigeminal ganglions. New England Journal of Medicine 288:648–650
    [Google Scholar]
  3. Campbell M. E. M., Palfreyman J. W., Preston C. M. 1984; Identification of herpes simplex virus DNA sequences which encode a trans-acting polypeptide responsible for stimulation of immediate early transcription. Journal of Molecular Biology 180:1–19
    [Google Scholar]
  4. Colberg-Poley A. M., Isom H. C., Rapp F. 1981; Involvement of an early human cytomegalovirus function in reactivation of quiescent herpes simplex virus type 2. Journal of Virology 37:1051–1059
    [Google Scholar]
  5. Cook M. L., Bastone V. B., Stevens J. G. 1974; Evidence that neurons harbor latent herpes simplex VIRUS. Infection and Immunity 9:946–951
    [Google Scholar]
  6. Cook M. L., Thompson R. L. 1986; A herpes simplex virus mutant is temperature sensitive for reactivation from the latent state: evidence for selective restriction in neuronal cells. Virology 155:293–296
    [Google Scholar]
  7. Crouch N. A., Rapp F. 1972; Cell-dependent differences in the production of infectious herpes simplex virus at a supraoptimal temperature. Journal of Virology 9:223–230
    [Google Scholar]
  8. Darai G., Munk K. 1973; Human embryonic lung cells abortively infected with herpesvirus hominis type 2 show some properties of cell transformation. Nature; London: 241268–269
    [Google Scholar]
  9. Efstathiou S., Minson A. C., Field H. J., Anderson J. R., Wildy P. 1986; Detection of herpes simplex virus- specific DNA sequences in latently infected mice and in humans. Journal of Virology 57:446–455
    [Google Scholar]
  10. Everett R. D. 1984; Trans activation of transcription by herpes virus products: requirement for two HSV-1 immediate-early polypeptides for maximum activity. EMBO Journal 3:3135–3141
    [Google Scholar]
  11. Galloway D. A., Fenoglio C., Shevchuk M., Mcdougall J. K. 1979; Detection of herpes simplex RNA in human sensory ganglia. Virology 95:265–268
    [Google Scholar]
  12. Galloway D. A., Fenoglio C. M., McDougall J. K. 1982; Limited transcription of the herpes simplex virus genome when latent in human sensory ganglia. Journal of Virology 41:686–691
    [Google Scholar]
  13. Gelman I. H., Silverstein S. 1985; Identification of immediate early genes from herpes simplex virus that transactivate the thymidine kinase gene. Proceedings of the National Academy of Sciences U.S.A.: 825265–5269
    [Google Scholar]
  14. Green M. T., Courtney R. J., Dunkel E. C. 1981; Detection of an immediate early herpes simplex virus type 1 polypeptide in trigeminal ganglia from latently infected animals. Infection and Immunity 34:987–992
    [Google Scholar]
  15. Harbour D. A., Hill T. J., Blyth W. A. 1983; Recurrent herpes simplex in the mouse: inflammation in the skin and activation of virus in the ganglia following peripheral stimulation. Journal of General Virology 64:1491–1498
    [Google Scholar]
  16. Levine M., Goldin A. L., Glorioso J. C. 1980; Persistence of herpes virus genes in cells of neuronal origin. Journal of Virology 35:203–210
    [Google Scholar]
  17. Lieberman P. M., O’Hare P., Hayward G. S., Hayward S. D. 1986; Promiscuous transactivation of gene expression by an Epstein-Barr virus-encoded early nuclear protein. Journal of Virology 60:140–148
    [Google Scholar]
  18. Mclennan J. L., Darby G. 1980; Herpes simplex virus latency: the cellular location of virus in dorsal root ganglia and the fate of the infected cell following virus activation. Journal of General Virology 51:233–243
    [Google Scholar]
  19. Marcon M. J., Kucera L. S. 1976; Consequences of herpes simplex virus type 2 and human cell interaction at supraoptimal temperatures. Journal of Virology 20:54–62
    [Google Scholar]
  20. Mavromara-Nazos P., Silver S., Hubenthal-Voss J., Mcknight J. L., Roizman B. 1986; Regulation of herpes simplex virus 1 genes: a gene sequence requirements for transient induction of indicator genes regulated by ftor late (y2) promoters. Virology 149:152–164
    [Google Scholar]
  21. Mosca J. D., Jeang K., Pitha P. M., Hayward G. S. 1987; Novel induction by herpes simplex virus of hybrid interferon gene transcripts driven by the strong cytomegalovirus IE94 promoter. Journal of Virology 61:818–828
    [Google Scholar]
  22. Nilheden E., Jeansson S., Vahlne A. 1985; Herpes simplex virus latency in a hyperresistant clone of mouse neuroblastoma (C1300) cells. Archives of Virology 83:319–325
    [Google Scholar]
  23. O’Hare P., Hayward G. S. 1985; Evidence for a direct role for both the 175,000- and 110,000-molecular-weight immediate-early proteins of herpes simplex virus in the transactivation of delayed-early promoters. Journalof Virology 53:751–760
    [Google Scholar]
  24. O’Neill F. J. 1977; Prolongation of herpes simplex virus latency in cultured human cells by temperature elevation. Journal of Virology 24:41–46
    [Google Scholar]
  25. O’Neill F. J., Goldberg R. J., Rapp F. 1972; Herpes simplex virus latency in cultured human cells following treatment with cytosine arabinoside. Journal of General Virology 14:189–197
    [Google Scholar]
  26. Park M., Kitchener H. C., Macnab J. C. M. 1983; Detection of herpes simplex virus type-2 DNA restriction fragments in human cervical carcinoma tissue. EMBO Journal 2:1029–1034
    [Google Scholar]
  27. Perry L. J., Rixon F. J., Everett R. D., Frame M. C., Mcgeoch D. J. 1986; Characterization of the IE 110 gene of herpes simplex virus type 1. Journal of General Virology 67:2365–2380
    [Google Scholar]
  28. Preston C. M. 1979; Control of herpes simplex virus type 1 mRNA synthesis in cells infected with wild-type virus or the temperature-sensitive mutant tsK. Journal of Virology 29:275–284
    [Google Scholar]
  29. Puga A., Rosenthal J. D., Openshaw H., Notkins A. L. 1978; Herpes simplex virus DNA and mRNA sequences in acutely and chronically infected trigeminal ganglia of mice. Virology 89:102–111
    [Google Scholar]
  30. Puga A., Cantin E. M., Wohlenberg C., Openshaw H., Notkins A. L. 1984; Different sizes of restriction endonuclease fragments from the terminal repetitions of the herpes simplex virus type 1 genome latent in trigeminal ganglia of mice. Journal of General Virology 65:437–444
    [Google Scholar]
  31. Rigby P. W. I., Dieckmann M., Rhodes C., Berg P. 1977; Labelling deoxyribonucleic acid to high specific activity in vitroby nick translation with DNA polymerase I. Journal of Molecular Biology 113:237–251
    [Google Scholar]
  32. Rock D. L. 1983; Detection of HSV-1 genome in central nervous system of latently infected mice. Nature; London: 302523–525
    [Google Scholar]
  33. Rock D. L., Fraser N. W. 1985; Latent herpes simplex virus type 1DNA contains two copies OF the virion DNA joint region. Journal of Virology 55:849–852
    [Google Scholar]
  34. Russell J., Preston C. M. 1986; An in vitrolatency system for herpes simplex virus type 2. Journal of General Virology 67:397–403
    [Google Scholar]
  35. Russell J., Stow E. C., Stow N. D., Preston C. M. 1987; Abnormal forms OF the herpes simplex virus immediate early polypeptide Vmwl75 induce the cellular stress response. Journal of General Virologv 68:2397–2406
    [Google Scholar]
  36. Sacks W. R., Schaffer P. A. 1987; Deletion mutants in the gene encoding the herpes simplex virus type 1 immediate-early protein ICPO exhibit impaired growth in cell culture. Journal of Virology 61:829–839
    [Google Scholar]
  37. Sears A. E., Halliburton I. W., Meignier B., Silver S., Roizman B. 1985; Herpes simplex virus 1 mutant deleted in the α22 gene: growth and gene expression in permissive and restrictive cells and establishment of latency in mice. Journal of Virology 55:338–346
    [Google Scholar]
  38. Shiraki K., Rapp F. 1986; Establishment of herpes simplex virus latency in vitrowith cycloheximide. Journal of General Virology 67:2497–2500
    [Google Scholar]
  39. Southern E. M. 1975; Detection of specific sequences among DNA fragments separated BY gel electrophoresis. Journal of Molecular Biology 98:503–517
    [Google Scholar]
  40. Stevens J. G. 1975; Latent herpes simplex virus and the nervous system. Current Topics in Microbiology and Immunology 70:31–50
    [Google Scholar]
  41. Stevens J. G., Cook M. L. 1971; Latent herpes simplex virus in spinal ganglia OF mice. Science 173:843–845
    [Google Scholar]
  42. Stevens J. G., Wagner E. K., Devi-Rao G. B., Cook M. L., Feldman L. T. 1987; RNA complementary to a herpesvirus β gene mRNA is prominent in latently infected neurons. Science 235:1056–1059
    [Google Scholar]
  43. Stow N. D., Stow E. C. 1986; Isolation and characterization of a herpes simplex virus type 1 mutant containing a deletion within the gene encoding the immediate early polypeptide Vmwl 10. Journal of General Virology 67:2571–2585
    [Google Scholar]
  44. Stroop W. G., Rock D. L., Fraser N. W. 1984; Localization of herpes simplex virus in the trigeminal and olfactory systems of the mouse central nervous system during acute and latent infections by in situ hybridization. Laboratory Investigation 51:27–38
    [Google Scholar]
  45. Wahl G. M., Stern M., Stark G. R. 1979; Efficient transfer of large DNA fragments from agarose gels to diazobenzyloxymethyl-paper and rapid hybridization by using dextran sulphate. Proceedings of the National Academy of Sciences U.S.A.: 763683–3687
    [Google Scholar]
  46. Watson K., Stevens J. G., Cook M. L., Subak-Sharpe J. H. 1980; Latency competence of thirteen HSV-1 temperature-sensitive mutants. Journal of General Virology 49:149–159
    [Google Scholar]
  47. Watson R. J., Clements J. B. 1980; A herpes simplex virus type 1 function continuously required for early and late virus mRNA synthesis. Nature; London: 285329–330
    [Google Scholar]
  48. Wigdahl B. L., Isom H. C., Rapp F. 1981; Repression and activation of the genome of herpes simplex viruses in human cells. Proceedings of the National Academy of Sciences U.S.A.: 786522–6526
    [Google Scholar]
  49. Wigdahl B. L., Scheck A. C., Declercq E., Rapp F. 1982a; High efficiency latency and activation of herpes simplex virus in human cells. Science 217:1145–1146
    [Google Scholar]
  50. Wigdahl B. L., Isom H. C., Declercq E., Rapp F. 1982b; Activation of herpes simplex virus (HSV) type 1 genome by temperature-sensitive mutants of HSV type 2. Virology 116:468–479
    [Google Scholar]
  51. Wildy P., Field H. J., Nash A. A. 1982; Classical herpes latency revisited. In Virus Persistence pp 133–167 Mahy B. W. J., Minson A. C., Darby G. K. Edited by Cambridge: Cambridge University Press;
    [Google Scholar]
  52. Wong K., Levine A. J. 1986; Identification and mapping of Epstein-Barr virus early antigens and demonstration of a viral gene activator that functions in trans. Journal of Virology60–149
    [Google Scholar]
  53. Youssoufian H., Hammer S. M., Hirsch M. S., Mulder C. 1982; Methylation of the viral DNA in an in vitromodel of herpes simplex virus latency. Proceedings of the National Academy of Sciences U.S.A.: 792207–2210
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-68-12-3009
Loading
/content/journal/jgv/10.1099/0022-1317-68-12-3009
Loading

Data & Media loading...

Most cited Most Cited RSS feed