Completion of the Sequence of the Genome of the Coronavirus Avian Infectious Bronchitis Virus Free

Abstract

SUMMARY

The nucleotide sequence determination of the genome of the Beaudette strain of the coronavirus avian infectious bronchitis virus (IBV) has been completed. The complete sequence has been obtained from 17 overlapping cDNA clones, the 5′-most of which contains the leader sequence (as determined by direct sequencing of the genome) and the 3′-most of which contains the poly(A) tail. Approximately 8 kilobases at the 3′ end of this sequence have already been published. These contain the sequences of mRNAs A to E within which are the genes for the spike, the membrane and the nucleocapsid polypeptides: the main structural components of the virion. The remainder of the sequence, equivalent to the ‘unique’ region of mRNA F, is some 20 kilobases in length and is thought to code for a polymerase or polymerases which are involved in the replication of the genome and the production of the subgenomic messenger RNAs. This sequence contains two large open reading frames, potentially coding for polypeptides of molecular weights 441000 and 300000. Unlike other large open reading frames in the virus, the 300000 open reading frame appears to have no subgenomic RNA associated with it which would allow it to be at the 5′ end of an mRNA species. Because of this, and because of the characteristics of the sequence in the region immediately upstream of its start codon, other mechanisms of translation, such as ribosome slippage, must be postulated.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-68-1-57
1987-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/68/1/JV0680010057.html?itemId=/content/journal/jgv/10.1099/0022-1317-68-1-57&mimeType=html&fmt=ahah

References

  1. Ambartsumyan N. S., Mazo A. M. 1980; Elimination of the secondary structure effect in gel sequencing of nucleic acids. FEBS Letters 114:265–268
    [Google Scholar]
  2. Atkins J. F., Elseviers D., Gorlnl L. 1972; Low activity of beta-galactosidase in frameshift mutants of Escherichia coli. Proceedings of the National Academy of Sciences, U.S.A 69:1192–1195
    [Google Scholar]
  3. Bankier A. , Barrell B. G. . 1983; Shotgun DNA sequencing. In Techniques in the Life Sciences (Biochemistry) B5 Techniques in Nucleic Acid Biochemistry pp. B51–34 Flavell R. A. Edited by Ireland: Elsevier;
    [Google Scholar]
  4. Baric R. S., Stohlman S. A. , Lai M. M. C. 1983; Characterisation of replicative intermediate RNA of mouse hepatitis virus: presence of leader RNA sequences on nascent chains. Journal of Virology 48:633–640
    [Google Scholar]
  5. Baric R. s., Stohlman S. A. , Razavi M. K., Lai M. M. C. 1985; Characterisation of leader-related small RNAs in coronavirus-infected cells: further evidence for leader-primed mechanism of transcription. Virus Research 3:19–33
    [Google Scholar]
  6. Beaudette F. R., Hudson C. B. 1937; Cultivation of the virus of infectious bronchitis. Journal of the American Veterinary Medical Association 90:51–60
    [Google Scholar]
  7. Biggin M. D., Gibson T. J., Hong G. F. 1983; Buffer gradient gels and 35S label as an aid to rapid DNA sequence determination. Proceedings of the National Academy of Sciences, U.S.A 803963–3965
    [Google Scholar]
  8. Biggin M., Farrel P. J., Barrell B. G. 1984; Transcription and DNA sequence of the BamHI L fragment of B95-8 Epstein-Barr virus. EMBO Journal 3:1083–1090
    [Google Scholar]
  9. Binns M. M., Boursnell M. E. G., Foulds I. J., Brown T. D. K. 1985a; The use of a random priming procedure to generate cDNA libraries of infectious bronchitis virus, a large RNA virus. Journal of Virological Methods 11:265–269
    [Google Scholar]
  10. Binns M. M., Boursnell M. E. G., Cavanag D., Pappin D. J. C., Brown T. D. K. 1985b; Cloning and sequencing of the gene encoding the spike protein of the coronavirus IBV. Journal of General Virology 66:719–726
    [Google Scholar]
  11. Boursnell M. E. G., Brown T. D. K. 1984; Sequencing of coronavirus IBV genomic RNA: a 195-base open reading frame encoded by mRNA B. Gene 29:87–92
    [Google Scholar]
  12. Boursnell M. E. G., Brown T. D. K., Binns M. M. 1984; Sequence of the membane protein gene from avian coronavirus IBV. Virus Research 1:303–313
    [Google Scholar]
  13. Boursnell M. E. G., Binns M. M., Foulds I. J., Brown T. D. K. 1985a; Sequences of the nucleocapsid genes from two strains of avian infectious bronchitis virus. Journal of General Virology 66:573–580
    [Google Scholar]
  14. Boursnell M. E. G., Binns M. M., Brown T. D. K. 1985b; Sequencing of coronavirus IBV genomic RNA: three open reading frames in the 5′ ‘unique’ region of mRNA D. Journal of General Virology 66:2253–2258
    [Google Scholar]
  15. Brayton P. R., Lai M. M. C., Patton C. D., Stohlman S. A. 1982; Characterisation of two polymerase activities induced by mouse hepatitis virus. Journal of Virology 42:847–853
    [Google Scholar]
  16. Brayton P. R., Stohlma S. A., Lai M. M. C. 1984; Further characterisation of mouse hepatitis virus RNAdependent RNA polymerases. Virology 133:197–201
    [Google Scholar]
  17. Brown T. D. K., Boursnell M. E. G. 1984; Avian infectious bronchitis virus genome RNA contains sequence homologies at the intergenic boundaries. Virus Research 1:15–24
    [Google Scholar]
  18. Brown T. D. K., Boursnell M. E. G., Binns M. M., Tomley F. M. 1986; Cloning and sequencing of 5′ terminal sequences from avian infectious bronchitis virus genomeic RNA. Journal of General Virology 67:221–228
    [Google Scholar]
  19. Caton A. J., Brownlee G. G., Yewdell J. W., Gerhard W. 1982; The antigenic structure of the influenza virus A/PR/8/34 bemagglutinin (H1 subtype). Cell 31:417–427
    [Google Scholar]
  20. Cavanagh D. 1981; Structural polypeptides of coronavirus IBV. Journal of General Virology 53:93–103
    [Google Scholar]
  21. Cornelissen J. C., Brederode F. T., Moormann R. J. M., Bol J. F. 1983; Complete nucleotide sequence of alfalfa mosaic virus RNA 1. Nucleic Acids Research 11:1253–1265
    [Google Scholar]
  22. Deininger P. L. 1983; Random subcloning of sonicated DNA: application to shotgun DNA sequence analysis. Analytical Biochemistry 129:216–223
    [Google Scholar]
  23. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Research 12:387–395
    [Google Scholar]
  24. Fox T. D., Weiss-Brummer B. 1980; Leaky +1 and -1 frameshift mutations at the same site in a yeast mitochondrial gene. Nature; London: 28860–63
    [Google Scholar]
  25. George D. G., Barker w. c., Hunt L. T. 1986; The protein identification resource (PIR). Nucleic Acids Research 14:11–15
    [Google Scholar]
  26. Germino J., Bastia D. 1982; Primary structure of the replication initiation protein of plasmid R6K. Proceedings of the National Academy of Sciences, U.S.A 79:5475–5479
    [Google Scholar]
  27. Herman R. c. 1986; Internal initiation of translation on the vesicular stomatitis virus phosphoprotein mRNA yields a second protein. Journal of Virology 58:797–804
    [Google Scholar]
  28. Hong G. F. 1981; A method for sequencing single-stranded cloned DNA in both directions. Bioscience Reports 1:243–252
    [Google Scholar]
  29. Jacks T., Varmus H. E. 1985; Expression of the Rous sarcoma virus pol gene by ribosomal frameshifting. Science 230:1237–1242
    [Google Scholar]
  30. Kanehisa M. I. 1982; Los Alamos sequence analysis package for nucleic acids and proteins. Nucleic Acids Research 10:183–196
    [Google Scholar]
  31. Kastelein R. A., Remaut E., Fiers w., Van Duin J. 1982; Lysis gene expression of RNA phage MS2 depends on a frameshift during translation of the overlapping coat protein gene. Nature; London: 29535–41
    [Google Scholar]
  32. Korneluk R. G., Quan F., Gravel R. A. 1985; Rapid and reliable dideoxy sequencing of double-stranded DNA. Gene 40:317–323
    [Google Scholar]
  33. Kozak M. 1983; Comparison of initiation of protein synthesis in procaryotes, eucaryotes, and organelles. Microbiological Reviews 47:1–45
    [Google Scholar]
  34. Kyte J., Doolittle R. F. 1982; A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology 157:105–132
    [Google Scholar]
  35. Lai M. M. c., Patton C. D., Stohlman S. A. 1982; Replication of mouse hepatitis virus: negative-stranded RNA and replicative form RNA are of genome length. Journal of Virology 44:487–492
    [Google Scholar]
  36. Lai M. M. C., Baric R. S., Makino S., Keck J. G., Egbert J., Leibowitz J. L., Stohlman S. A. 1985; Recombination between nonsegmented RNA genomes of murine coronaviruses. Journal of Virology 56:449–456
    [Google Scholar]
  37. Leibowitz J. L., Wilhelmsen K. C., Bond C. W. 1981; The virus-specific intracellular RNA species of two murine coronaviruses: MHV-A59 and MHV-JHM. Virology 114:39–51
    [Google Scholar]
  38. Leibowitz J. L., Weiss S. R., Paavola E., Bond C. W. 1982; Cell-free translation of murine coronavirus RNA. Journal of Virology 43:905–913
    [Google Scholar]
  39. Lipman D. J., Pearson W. R. 1985; Rapid and sensitive protein similarity searches. Science 227:1435–1441
    [Google Scholar]
  40. Lomniczi B. 1977; Biological properties of avian coronavirus RNA. Journal of General Virology 36:531–533
    [Google Scholar]
  41. Lomniczi B., Kennedy I. 1977; Genome of infectious bronchitis virus. Journal of Virology 24:99–107
    [Google Scholar]
  42. Makino S., Stohlman S. A., Lai M. M. C. 1986; Leader sequences of murine coronavirus mRNAs can be freely reassorted: evidence for the role of free leader RNA in transcription. Proceedings of the National Academy of Sciences, U.S.A 834204–4208
    [Google Scholar]
  43. Maxam A. M., Gilbert W. 1980; Sequencing end-labeled DNA with base-specific chemical cleavages. Methods in Enzymology 65:499–560
    [Google Scholar]
  44. Mizusawa S., Nishimura S., Seela F. 1986; Improvement of the dideoxy chain termination method of DNA sequencing by use of deoxy-7-deazaguanosine triphosphate in place of dGTP. Nucleic Acids Research 14:1319–1324
    [Google Scholar]
  45. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, U.S.A 745463–5467
    [Google Scholar]
  46. Schochetman G., Stevens R. H., Simpson R. W. 1977; Presence of infectious polyadenylated RNA in the coronavirus avian bronchitis virus. Virology 77:772–782
    [Google Scholar]
  47. Schubert M., Harmison G. G., Meier E. 1984; Primary structure of the vesicular stomatitis virus polymerase (L) gene: evidence for a high frequency of mutations. Journal of Virology 51:505–514
    [Google Scholar]
  48. Siddell S. G., Anderson R., Cavanagh D., Fujiwara K., Klenk H. D., Macnaughton M. R., Pensaert M., Stohlman S. A., Sturman L., Van Der Zeist B. A. M. 1983a; Coronaviridae. Intervirology 20:181–189
    [Google Scholar]
  49. Siddell S., Wege H., Ter Meulen V. 1983b; The biology of coronaviruses. Journal of General Virology 64:761–776
    [Google Scholar]
  50. Southern E. M. 1975; Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98:503–517
    [Google Scholar]
  51. Spaan W., Delius H., Skinner M., Armstrong J., Rottier P., Smeekens S., Van Der Zeijst B. A. M., Siddell S. G. 1983; Coronavirus mRNA synthesis involves fusion of non-contiguous sequences. EMBO Journal 2:1839–1844
    [Google Scholar]
  52. Staden R. 1982a; An interactive graphics program for comparing and aligning nucleic acid and amino acid sequences. Nucleic Acids Research 10:2951–2961
    [Google Scholar]
  53. Staden R. 1982b; Automation of the computer handling of gel reading data produced by the shotgun method of DNA sequencing. Nucleic Acids Research 10:4731–4751
    [Google Scholar]
  54. Staden R. 1984a; A computer program to enter DNA gel reading data into a computer. Nucleic Acids Research 1984b; 12:499–503
    [Google Scholar]
  55. Staden R. 1984b; Graphic methods to determine the function of nucleic acid sequences. Nucleic Acids Research 12:521–538
    [Google Scholar]
  56. Staden R. 1984c; Measurements of the effects that coding for a protein has on a DNA sequence and their use for finding genes. Nucleic Acids Research 12:551–567
    [Google Scholar]
  57. Staden R., Mclachlan A. D. 1982; Codon preference and its use in identifying protein coding regions in long DNA sequences. Nucleic Acids Research 10:141–157
    [Google Scholar]
  58. Steinhauer D. A., Holland J. J. 1986; Direct method for quantitation of extreme polymerase error frequencies at selected single base sites in viral RNA. Journal of Virology 57:219–228
    [Google Scholar]
  59. Stern D. F., Kennedy S. I. T. 1980a; Coronavirus multiplication strategy. I. Identification and characterisation of virus-specified RNA. Journal of Virology 34:665–674
    [Google Scholar]
  60. Stern D. F., Kennedy S. I. T. 1980b; Coronavirus multiplication strategy. II. Mapping the avian infectious bronchitis virus intracellular RNA species to the genome. Journal of Virology 36:440–449
    [Google Scholar]
  61. Stern D. F., Sefton B. M. 1984; Coronavirus multiplication: the locations of genes for the virion proteins on the avian infectious bronchitis virus genome. Journal of Virology 50:22–29
    [Google Scholar]
  62. Strauss E. G., Strauss J. H. 1983; Replication strategies of the single stranded RNA viruses Of eukaryotes. Current Topics in Microbiology and Immunology 105:1–98
    [Google Scholar]
  63. Strauss E. G., Rice C. M., Strauss J. H. 1984; Complete sequence of the genomic RNA of Sindbis virus. Virology 133:92–110
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-68-1-57
Loading
/content/journal/jgv/10.1099/0022-1317-68-1-57
Loading

Data & Media loading...

Most cited Most Cited RSS feed