A Filamentous Distribution for the Herpes Simplex Virus Type 2-encoded Major DNA-binding Protein Free

Abstract

Summary

Monoclonal antibodies reacting with the herpes simplex virus (HSV)-encoded major DNA-binding protein defined an intracellular filamentous network. This network was associated predominantly with the infected cell nucleus and occurred in cells infected with HSV type 2. It did not co-distribute with microfilaments, microtubules or intermediate filaments, and DNA synthesis was required for its formation. We suggest explanations for the occurrence and function of this novel filamentous network structure.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-67-7-1315
1986-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/67/7/JV0670071315.html?itemId=/content/journal/jgv/10.1099/0022-1317-67-7-1315&mimeType=html&fmt=ahah

References

  1. Barak L. S., Yocum R. R., Nothnagel E. A., Webb W. W. 1980; Fluorescence staining of the actin cytoskeleton in living cells with 7-nitrobenz-2-oxa-l, 3-diazole phallacidin. Proceedings of the National Academy of Sciences, U.S.A. 77:980–984
    [Google Scholar]
  2. Bayliss G. I., Marsden H. S., Hay J. 1975; Herpes simplex virus proteins: DNA-binding proteins in infected cells and in the virus structure. Virology 68:124–134
    [Google Scholar]
  3. Bedows E., Rao K. M. K., Walsh M. J. 1983; Fate of microfilaments in Vero cells infected with measles virus and herpes simplex virus type 1. Molecular and Cellular Biology 3:712–719
    [Google Scholar]
  4. Bookout J. B., Levy C. C. 1980; Comparative examination of the polypeptides of herpes simplex virus: types 1 and 2. Virology 101:198–216
    [Google Scholar]
  5. Cervera M., Dreyfuss G., Penman S. 1981; Messenger RNA is translated when associated with the cytoskeletal framework in normal and HSV infected HeLa cells. Cell 23:113–120
    [Google Scholar]
  6. Chan W. L. 1983; Protective immunization of mice with specific herpes simplex virus type 1 glycoproteins. Immunology 49:343–351
    [Google Scholar]
  7. Conley A. J., Knipe D. M., Jones P. C., Roizman B. 1981; Molecular genetics of herpes simplex virus. VII. Characterisation of a temperature-sensitive mutant produced by in vitro mutagenesis and defective in DNA synthesis and accumulation of gamma polypeptides. Journal of Virology 37:191–206
    [Google Scholar]
  8. Couch E. F., Nahmias A. J. 1969; Filamentous structures of type 2 herpes virus hominis infection of the chorioallantoic membrane. Journal of Virology 3:228–232
    [Google Scholar]
  9. Davison A. J., Wilkie N. M. 1983; Location and orientation of homologous sequences in the genomes of five herpesviruses. Journal of General Virology 64:1927–1942
    [Google Scholar]
  10. Fenwick M. L., Walker M. J. 1979; Phosphorylation of a ribosomal protein and of virus-specific proteins in cells infected with herpes simplex virus. Journal of General Virology 45:397–405
    [Google Scholar]
  11. Fenwick M. L., Walker M. J., Petkevich J. M. 1978; On the association of virus proteins with the nuclei of cells infected with herpes simplex virus. Journal of General Virology 39:519–529
    [Google Scholar]
  12. Fulton A. B. 1982; How crowded is the cytoplasm?. Cell 30:345–347
    [Google Scholar]
  13. Godowski P. J., Knipe D. M. 1983; Mutations in the major DNA binding protein gene of herpes simplex virus type 1 result in increased levels of viral gene expression. Journal of Virology 47:478–486
    [Google Scholar]
  14. Goldstein L. C., Corey L., McDougall J. K., Tolentino E., Nowinski R. C. 1983; Monoclonal antibodies to herpes simplex viruses: use in antigenic typing and rapid diagnosis. Journal of Infectious Diseases 147:829–837
    [Google Scholar]
  15. Honess R. W. 1984; Herpes simplex and ‘the herpes complex’: diverse observations and a unifying hypothesis. Journal of General Virology 65:2077–2107
    [Google Scholar]
  16. Hynes R. O., Destree A. T. 1978; 10nm filaments in normal and transformed cells. Cell 13:151–163
    [Google Scholar]
  17. Knipe D. M., Spang A. E. 1982; Definition of a series of stages in the association of two herpes viral proteins with the cell nucleus. Journal of Virology 43:314–324
    [Google Scholar]
  18. Lathangue N. B. 1984; A major heat shock protein defined by a monoclonal antibody. EMBO Journal 3:1871–1879
    [Google Scholar]
  19. Lathangue N. B., Chan W. L. 1984; The purification and characterisation of DNA binding proteins present within herpes simplex virus infected cells using monoclonal antibodies. Archives of Virology 43:314–324
    [Google Scholar]
  20. Lathangue N. B., Shriver K., Dawson C., Chan W. L. 1984; Herpes simplex virus infection causes the accumulation of a heat shock protein. EMBO Journal 3:267–277
    [Google Scholar]
  21. Lawson D. L. 1983; Epinemin: a new protein associated with vimentin filaments in non-neural cells. Journal of Cell Biology 97:1891–1905
    [Google Scholar]
  22. Lazarides E., Weber K. 1974; Actin antibody: the specific visualization of actin filaments in non muscle cells. Proceedings of the National Academy of Sciences, U.S.A. 71:2268–2272
    [Google Scholar]
  23. Lenk R., Penman S. 1979; The cytoskeletal framework and poliovirus metabolism. Cell 16:289–301
    [Google Scholar]
  24. Littler E., Purifoy D., Minson A., Powell K. L. 1983; Herpes simplex virus non-structural proteins. III. Function of the major DNA-binding protein. Journal of General Virology 64:983–995
    [Google Scholar]
  25. Macpherson I., Stoker M. 1962; Polyoma transformation of hamster cell clones - an investigation of the genetic factors affecting cell competence. Virology 16:147–151
    [Google Scholar]
  26. Manman E. C., Van Eekelen C. A., Reinders R. J., Berns A. J., Van Venrooij W. J. 1982; Adenoviral heterogeneous nuclear RNA is associated with the host nuclear matrix during splicing. Journal of Molecular Biology 154:103–119
    [Google Scholar]
  27. Mao J. G., Robishaw E. E. 1975; Mode of inhibition of herpes simplex virus DNA polymerase by phosphonoacetate. Biochemistry 14:5475–5479
    [Google Scholar]
  28. Miller T. E., Huang C. Y., Poge A. O. 1978; Rat liver nuclear skeleton and ribonucleoprotein complexes containing hn RNA. Journal of Cell Biology 76:675–691
    [Google Scholar]
  29. Minton A. P. 1981; Excluded volume as a determinant of macromolecular structure and reactivity. Biopolymers 20:2093–2120
    [Google Scholar]
  30. Murphy F. A., Harrison A. K., Whitfield S. G. 1967; Intranuclear formation of filaments in herpes virus hominis infection of mice. Archiv für die gesamte Virusforschung 21:463–468
    [Google Scholar]
  31. Powell K. L., Purifoy D. J. M. 1976; DNA binding proteins of cells infected by herpes simplex virus type 1 and type 2. Intervirology 7:225–239
    [Google Scholar]
  32. Quinlan M. P., Knipe D. M. 1983; Nuclear localization of herpes virus proteins: potential role for the cellular framework. Molecular and Cellular Biology 3:315–324
    [Google Scholar]
  33. Quinlan M. P., Chen L. B., Knipe D. M. 1984; The intranuclear location of a herpes simplex virus DNA binding protein is determined by the status of viral DNA replication. Cell 36:857–868
    [Google Scholar]
  34. Schwartz J., Roizman B. 1969; Similarities and differences in the development of laboratory strains and freshly isolated strains of herpes simplex virus in HEp2 cells: electron microscopy. Journal of Virology 4:879–889
    [Google Scholar]
  35. Seth P., Rawls W. E., Duff R., Rapp F., Melnick J. L. 1974; Antigenic differences between isolates of herpesvirus type 2. Intervirology 3:1–14
    [Google Scholar]
  36. Spear P., Roizman B. 1980; Herpes simplex viruses. In DNA Tumor Viruses: Molecular Biology of Tumor Viruses Part 2 pp 615–745 New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  37. Subjeck J. R., Shyy T., Shen J., Johnson R. J. 1983; Association between the mammalian 110, 000 dalton heatshock protein and nucleoli. Journal of Cell Biology 97:1389–1395
    [Google Scholar]
  38. Sydiskis R. J., Roizman B. 1966; Polysomes and protein synthesis in cells infected with a DNA virus. Science 153:76–78
    [Google Scholar]
  39. Sydiskis R. J., Roizman B. 1967; The disaggregation of host polyribosomes in productive and abortive infection with herpes simplex virus. Virology 32:678–686
    [Google Scholar]
  40. Thiery J. P. 1958; Etude sur le plasmocyte en contraste de phase et en microscope electronique. III. Plasmocytes à corps de Russel et al. cristaux. Revue d’hématologie 13:61–78
    [Google Scholar]
  41. Vogelstein B., Pardoll D. M., Coffey D. S. 1980; Supercoiled loops and eukaryotic DNA replication. Cell 22:79–85
    [Google Scholar]
  42. Weisenberg R. C. 1982; Microtubule formation in vitro in solutions containing low calcium concentrations. Science 177:1104–1105
    [Google Scholar]
  43. Yeo J., Killington R. A., Watson D. H., Powell K. L. 1981; Studies on cross reactive antigens in the herpes viruses. Virology 108:256–266
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-67-7-1315
Loading
/content/journal/jgv/10.1099/0022-1317-67-7-1315
Loading

Data & Media loading...

Most cited Most Cited RSS feed