1887

Abstract

Summary

Gene US4 of herpes simplex virus type 1 (HSV-1) has been predicted, from DNA sequence analysis, to encode a protein of molecular weight 25237 and its properties suggest it to be a membrane-associated protein. We have investigated this protein by raising antiserum to a synthetic oligopeptide corresponding to a stretch of amino acids from an internal hydrophilic region of the predicted sequence. This antiserum immunoprecipitates three glycoprotein species of apparent mol. wt. 37000, 48000 and 56000 from extracts of cells infected with HSV-1. These species are also specifically immunoprecipitated from purified virions. The translation product of gene US4 has an apparent mol. wt. of 35000. Sequence comparisons of the short unique regions of the HSV-1 and HSV-2 genomes, in combination with published mapping data for glycoprotein G (gG) of HSV-2, has led to the conclusion that the product of gene US4 of HSV-1 is the equivalent of gG.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-67-4-745
1986-04-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/67/4/JV0670040745.html?itemId=/content/journal/jgv/10.1099/0022-1317-67-4-745&mimeType=html&fmt=ahah

References

  1. Bassiri R. M., Dvorak J., Utiger R. D. 1979; Thyrotropin-releasing hormone. In Methods of Hormone Radioimmunoassay pp. 46–47 Edited by Jaffe B. M., Behrman H. R. New York: Academic Press;
    [Google Scholar]
  2. Batterson W., Roizman B. 1983; Characterisation of the herpes simplex virion-associated factor responsible for the induction of genes. Journal of Virology 46:371–377
    [Google Scholar]
  3. Brown S. M., Ritchie D. A., Subak-sharpe J. H. 1973; Genetic studies with herpes simplex virus type 1. The isolation of temperature-sensitive mutants, their arrangement into complementation groups and recombination analysis leading to a linkage map. Journal of General Virology 18:329–346
    [Google Scholar]
  4. Buckmaster E. A., Gompels U., Minson A. 1984; Characterisation and physical mapping of an HSV-1 glycoprotein of approximately 115 × 103 molecular weight. Virology 139:408–413
    [Google Scholar]
  5. Bzik D. J., Fox B. A., Deluca N. A., Person S. 1984; Nucleotide sequence specifying the glycoprotein gene, gB, of herpes simplex virus type 1. Virology 133:301–314
    [Google Scholar]
  6. Campbell M. E. M., Palfreyman J. W., Preston C. M. 1984; Identification of herpes simplex virus DNA sequences which encode a trans-acting polypeptide responsible for stimulation of immediate-early transcription. Journal of Molecular Biology 180:1–19
    [Google Scholar]
  7. Dalrymple M. A., Mcgeoch D. J., Davison A. J., Preston C. M. 1985; DNA sequence of the herpes simplex virus type 1 gene whose product is responsible for transcriptional activation of immediate-early promoters. Nucleic Acids Research 13:7865–7879
    [Google Scholar]
  8. Dowbenko D. J., Lasky L. A. 1984; Extensive homology between the herpes simplex virus type 2 glycoprotein F gene and the herpes simplex virus type 1 glycoprotein C gene. Journal of Virology 52:154–163
    [Google Scholar]
  9. Draper K. G., Frink R., Devi G. B., Swain M., Galloway D., Wagner E. K. 1984; Herpes simplex virus types 1 and 2 homology in the region between 0–58 and 0.68 map units. Journal of Virology 52:615–623
    [Google Scholar]
  10. Eberle R., Courtney R. J. 1980; gA and gB glycoproteins of herpes simplex virus type 1: two forms of a single polypeptide. Journal of Virology 36:665–675
    [Google Scholar]
  11. Frame M. C., Mcgeoch D. J., Nixon F. J., Orr A. C., Marsden H. S. 1986; The 10K virion phosphoprotein encoded by gene US9 from herpes simplex virus type 1. Virology (in press)
    [Google Scholar]
  12. Frink R. J., Eisenberg R., Cohen G., Wagner E. K. 1983; Detailed analysis of the portion of the herpes simplex virus type 1 genome encoding glycoprotein C. Journal of Virology 45:634–647
    [Google Scholar]
  13. Halliburton I. W. 1980; Intertypic recombinants of herpes simplex virus. Journal of General Virology 48:1–23
    [Google Scholar]
  14. Hope R. G., Palfreyman J. W., Suh M., Marsden H. S. 1982; Sulphated glycoproteins induced by herpes simplex virus. Journal of General Virology 58:399–415
    [Google Scholar]
  15. Johnson D. C., Spear P. G. 1982; Monensin inhibits processing of herpes simplex virus glycoproteins, their transport to the cell surface and the egress of virions from infected cells. Journal of Virology 43:1102–1112
    [Google Scholar]
  16. Kyte J., Doolittle R. F. 1982; A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology 157:105–132
    [Google Scholar]
  17. Lee G. T. -Y., Para M. F., Spear P. G. 1982; Location of the structural genes for glycoproteins gD and gE and for other polypeptides in the S component of herpes simplex type 1 DNA. Journal of Virology 43:41–49
    [Google Scholar]
  18. Mcgeoch D. J. 1985; On the predictive recognition of signal peptide sequences. Virus Research 3:271–286
    [Google Scholar]
  19. Mcgeoch D. J., Dolan A., Donald S., Rixon F. J. 1985; Sequence determination and genetic content of the short unique region in the genome of herpes simplex virus type 1. Journal of Molecular Biology 181:1–13
    [Google Scholar]
  20. MACPHERSON I., STOKER M. 1962; Polyoma transformation of hamster cell clones. Virology 16:147–151
    [Google Scholar]
  21. Marsden H. S., Stow N. D., Preston V. G., Timbury M. C., Wilkie N. M. 1978; Physical mapping of herpes simplex virus induced polypeptides. Journal of Virology 28:624–642
    [Google Scholar]
  22. Marsden H. S., Buckmaster A., Palfreyman J. W., Hope R. G., Minson A. C. 1984; Characterisation of the 92000 dalton glycoprotein induced by herpes simplex virus type 2. Journal of Virology 50:547–554
    [Google Scholar]
  23. Olofsson S., Lundstrom M., Marsden H., Jeansson S., Vahlne A. 1986; Characterization of a herpes simplex virus type 2-specified glycoprotein with affinity for, V-acetylgalactosamine-specific lectins and its identification as g92K or gG. Journal of General Virology 67:737–744
    [Google Scholar]
  24. Para M. F., Goldstein L., Spear P. G. 1982; Similarities and differences in the Fc-binding glycoprotein (gE) of herpes simplex virus types 1 and 2 and tentative mapping of the gene for this glycoprotein. Journal of Virology 41:137–144
    [Google Scholar]
  25. Para M. F., Zezulak K. M., Conley A. J., Weinberger M., Snitzer K., Spear P. G. 1983; Use of monoclonal antibodies against two 75000 molecular weight glycoproteins specified by herpes simplex virus type 2 in glycoprotein identification and gene mapping. Journal of Virology 45:1223–1227
    [Google Scholar]
  26. Pelham H. R. B., Jackson R. J. 1976; An efficient mRNA-dependent translation system from reticulocyte lysates. European Journal of Biochemistry 67:247–256
    [Google Scholar]
  27. Pellet P. E., Kousoulas K. G., Pereira L., Roizman B. 1985; Anatomy of the herpes simplex virus 1 strain F glycoprotein B gene: primary sequence and predicted protein structure of the wild type and of monoclonal- resistant mutants. Journal of Virology 53:243–253
    [Google Scholar]
  28. Pereira L., Klassen T., Baringer J. R. 1980; Type-common and type-specific monoclonal antibody to herpes simplex virus type 1. Infection and Immunity 29:724–732
    [Google Scholar]
  29. Preston C. M. 1979; Control of herpes simplex virus type 1 mRNA synthesis in cells infected with wild type virus or the temperature-sensitive mutant tsK. Journal of Molecular Biology 29:275–284
    [Google Scholar]
  30. Roizman B., Norrild B., Chan C., Pereira I. 1984; Identification and preliminary mapping with monoclonal antibodies of a herpes simplex virus type 2 glycoprotein lacking a known type 1 counterpart. Virology 133:242–247
    [Google Scholar]
  31. Ruyechan W. T., Morse I. S., Knipe D. M., Roizman B. 1979; Molecular genetics of herpes simplex virus. II. Mapping of the major viral glycoproteins and of the genetic loci specifying the social behavior of infected cells. Journal of Virology 29:677–697
    [Google Scholar]
  32. Showalter S. D., Zweig M., Hampar B. 1981; Monoclonal antibodies to herpes simplex virus type 1 proteins, including the immediate-early protein ICP4. Infection and Immunity 34:684–692
    [Google Scholar]
  33. Spear P. G. 1984; Glycoproteins specified by herpes simplex viruses. In The Herpesviruses pp. 315–356 Edited by Roizman B. New York & London: Plenum Press;
    [Google Scholar]
  34. Stevely W. S., Katan M., Stirling V., Smith G., Leader D. P. 1985; Protein kinase activities associated with the virions of pseudorabies and herpes simplex virus. Journal of General Virology 66:661–673
    [Google Scholar]
  35. Swain M. A., Peet R. W., Galloway D. 1985; Characterisation of the gene encoding herpes simplex virus type 2 glycoprotein C and comparison with the type 1 counterpart. Journal of Virology 53:561–569
    [Google Scholar]
  36. WATSON R. J., WEISS J. H., SALSTROM J. S., ENQUIST L. W. 1982; Herpes simplex virus type-1 glycoprotein D gene: nucleotide sequence and expression in Escherichia coli. Science 218:381–384
    [Google Scholar]
  37. Zezulak K. M., Spear P. G. 1983; Characterisation of a herpes simplex virus type 2 75000 molecular weight glycoprotein antigenically related to herpes simplex virus type 1 glycoprotein C. Journal of Virology 41:553–562
    [Google Scholar]
  38. Zweig M., Showalter S. D., Bladen S. V., Heilman C. J. Jr, Hampar B. 1983; Herpes simplex virus type 2 glycoprotein gF and type 1 gC have related antigenic determinants. Journal of Virology 47185–192
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-67-4-745
Loading
/content/journal/jgv/10.1099/0022-1317-67-4-745
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error