1887

Abstract

Summary

The genomes of herpes simplex virus type 1 (HSV-1) and varicella-zoster virus (VZV) consist of two covalently joined segments, L and S. Each segment comprises an unique sequence flanked by inverted repeats. We have reported previously the DNA sequences of the S segments in these two genomes, and have identified protein-coding regions therein. In HSV-1, the unique sequence of S contains ten entire genes plus the major parts of two more, and each inverted repeat contains one entire gene; in VZV, the unique sequence of S contains two entire genes plus the major parts of two more, and each inverted repeat contains three entire genes. In this report, an examination of polypeptide sequence homology has shown that each VZV gene has an HSV-1 counterpart, but that six of the HSV-1 genes have no VZV homologues. Thus, although these regions of the two genomes differ in gene layout, they are related to a significant degree. The analysis indicates that the inverted repeats are evidently capable of large-scale expansion or contraction during evolution. The differences in gene layout can be understood as resulting from a small number of recombinational events during the descent of HSV-1 and VZV from a common ancestor.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-67-4-597
1986-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/67/4/JV0670040597.html?itemId=/content/journal/jgv/10.1099/0022-1317-67-4-597&mimeType=html&fmt=ahah

References

  1. Baer R., Bankier A. T., Biggin M. D., Deininger P. L., Farrell P. J., Gibson T. J., Hatfull G., Hudson G. S., Satchwell S. C., Seguin C., Tuffnell P. S., Barrell B. G. 1984; DNA sequence and expression of the B95-8 Epstein–Barr virus genome. Nature, London 310:207–211
    [Google Scholar]
  2. Becker V., Dym H., Sarov I. 1968; Herpes simplex virus DNA. Virology 36:184–192
    [Google Scholar]
  3. Ben-Porat T., Rixon F. J., Blankenship M. L. 1979; Analysis of the structure of the genome of pseudorabies virus. Virology 95:285–294
    [Google Scholar]
  4. Dalziel R. G., Marsden H. S. 1984; Identification of two herpes simplex virus type 1-induced proteins (21K and 22K) which interact specifically with the a sequence of herpes simplex virus DNA. Journal of General Virology 65:1467–1475
    [Google Scholar]
  5. Davison A. J. 1983; DNA sequence of the US component of the varicella-zoster virus genome. EMBO Journal 2:2203–2209
    [Google Scholar]
  6. Davison A. J., Scott J. E. 1984; Structure of the genome termini of varicella-zoster virus. Journal of General Virology 65:1969–1977
    [Google Scholar]
  7. Davison A. J., Scott J. E. 1985; DNA sequence of the major inverted repeat in the varicella-zoster virus genome. Journal of General Virology 66:207–220
    [Google Scholar]
  8. Davison A. J., Wilkie N. M. 1983; Location and orientation of homologous sequences in the genomes of five herpesviruses. Journal of General Virology 64:1927–1942
    [Google Scholar]
  9. Davison A. J., Waters D. J., Edson C. M. 1985; Identification of the products of a varicella-zoster virus glycoprotein gene. Journal of General Virology 66:2237–2242
    [Google Scholar]
  10. Davison M. -J., Preston V. G., Mcgeoch D. J. 1984; Determination of the sequence alteration in the DNA of the herpes simplex virus type 1 temperature-sensitive mutant ts K. Journal of General Virology 65:859–863
    [Google Scholar]
  11. Dixon R. A. F., Schaffer P. A. 1980; Fine structure mapping and functional analysis of temperature sensitive mutants in the gene encoding the herpes simplex virus type 1 immediate early protein VP 175. Journal of Virology 36:189–203
    [Google Scholar]
  12. Ellis R. W., Keller P. M., Lowe R. S., Zivin R. A. 1985; Use of a bacterial expression vector to map the varicella-zoster virus major glycoprotein gene, gC. Journal of Virology 53:81–88
    [Google Scholar]
  13. Everett R. D. 1984; Transactivation of transcription of herpes virus products; requirements for two HSV-1 immediate early polypeptides for maximum activity. EMBO Journal 3:3135–3141
    [Google Scholar]
  14. Frame M. C., McGeoch D. J., Rixon F. J., Orr A. C., Marsden H. S. 1986; The 10K virion phosphoprotein encoded by Us gene 9 from herpes simplex virus type 1. Virology (in press)
    [Google Scholar]
  15. Gibson T., Stockwell P., GinSburg M., Barrell B. 1984; Homology between two EBV early genes and HSV ribonucleotide reductase and 38K. genes. Nucleic Acids Research 12:5087–5099
    [Google Scholar]
  16. Honess R. W. 1984; Herpes simplex and ‘the herpes complex’: diverse observations and a unifying hypothesis. Journal of General Virology 65:2077–2107
    [Google Scholar]
  17. Hope R. G., Marsden H. S. 1983; Processing of glycoproteins induced by herpes simplex virus type 1: sulphation and nature of oligosaccharide linkages. Journal of General Virology 64:1943–1953
    [Google Scholar]
  18. Hope R. G., Palfreyman J. W., Suh M., Marsden H. S. 1982; Sulphated glycoproteins induced by herpes simplex virus. Journal of General Virology 58:399–415
    [Google Scholar]
  19. Kieff E. D., Bachenheimer S. L., Roizman B. 1971; Size, composition and structure of the deoxyribonucleic acid of herpes simplex virus subtypes 1 and 2. Journal of Virology 8:125–132
    [Google Scholar]
  20. Kyte L., Doolittle R. F. 1982; A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology 157:105–132
    [Google Scholar]
  21. Lee G. T. Y., Para M. F., Spear P. G. 1982; Location of the structural genes for glycoproteins gD and gE and for other polypeptides in the S component of herpes simplex virus type 1 DNA. Journal of Virology 43:41–49
    [Google Scholar]
  22. Ludwig H., Haines H. G., Biswal N., Benyesh-Melnick M. 1972; The characterization of varicella-zoster virus DNA. Journal of General Virology 14:111–114
    [Google Scholar]
  23. McGeoch D. J. 1984; The nature of animal virus genetic material. In The Microbe 1984. Part I: Viruses pp. 75–107 Edited by Mahy B. W. J., Pattison J. R. Cambridge: Cambridge University Press;
    [Google Scholar]
  24. Mcgeoch D. J. 1985; On the predictive recognition of signal peptide sequences. Virus Research 3:271–286
    [Google Scholar]
  25. Mcgeoch D. J., Davison A. J. 1986; Alphaherpesviruses possess a gene homologous to the protein kinase gene family of eukaryotes and retroviruses. Nucleic Acids Research (in press)
    [Google Scholar]
  26. Mcgeoch D. J., Dolan A., Donald S., Rixon F. J. 1985; Sequence determination and genetic content of the short unique region in the genome of herpes simplex virus type 1. Journal of Molecular Biology 181:1–13
    [Google Scholar]
  27. Mcgeoch D. J., Donald S., Dolan A., Brauer D. H. K. 1986; Complete DNA sequence of the short repeat region in the genome of herpes simplex virus type 1. Nucleic Acids Research (in press)
    [Google Scholar]
  28. Marsden H. S., Crombie I. K., Subak-Sharpe J. H. 1976; Control of protein synthesis in herpesvirus-infected cells: analysis of the polypeptides induced by wild type and sixteen temperature-sensitive mutants of HSV strain 17. Journal of General Virology 31:347–372
    [Google Scholar]
  29. Marsden H. S., Lang J., Davison A. J., Hope R. G., Macdonald D. M. 1982; Genomic location and lack of phosphorylation of the HSV immediate-early polypeptide IE 12. Journal of General Virology 62:17–27
    [Google Scholar]
  30. Matthews R. E. F. 1982; Classification and nomenclature of viruses. Intervirology 17:1–200
    [Google Scholar]
  31. Murchie M. -J., Mcgeoch D. J. 1982; DNA sequence analysis of an immediate-early gene region of the herpes simplex virus type 1 genome (map coordinates 0.950 to 0.978). Journal of General Virology 62:1–15
    [Google Scholar]
  32. Para M. F., Goldstein L., Spear P. G. 1982; Similarities and differences in the Fc binding glycoprotein (gE) of herpes simplex virus types 1 and 2 and tentative mapping of the viral gene for this glycoprotein. Journal of Virology 41:137–144
    [Google Scholar]
  33. Post L. E., Roizman B. 1981; A generalized technique for deletion of specific genes in large genomes: α gene 22 of herpes simplex virus 1 is not essential for growth. Cell 25:227–232
    [Google Scholar]
  34. Preston C. M. 1979; Control of herpes simplex virus type 1 mRN A synthesis in cells infected with wild type virus or the temperature sensitive mutant tsK. Journal of Virology 29:275–285
    [Google Scholar]
  35. Preston V. G. 1981; Fine-structure mapping of herpes simplex virus type 1 temperature-sensitive mutations within the short repeat region of the genome. Journal of Virology 39:150–161
    [Google Scholar]
  36. Pustell J., Kafatos F. C. 1982; A high speed, high capacity homology matrix: zooming through SV40 and polyoma. Nucleic Acids Research 10:4765–4782
    [Google Scholar]
  37. Quinn J. P., Mcgeoch D. J. 1985; DNA sequence of the region in the genome of herpes simplex virus type 1 containing the genes for DNA polymerase and the major DNA binding protein. Nucleic Acids Research 13:8143–8163
    [Google Scholar]
  38. Rixon F. J., Clements J. B. 1982; Detailed structural analysis of the two spliced HSV-1 immediate-early mRNAs. Nucleic Acids Research 10:2241–2256
    [Google Scholar]
  39. Rixon F. J., Mcgeoch D. J. 1984; A 3ʹ co-terminal family of mRNAs from the herpes simplex virus type 1 short region: two overlapping reading frames encode unrelated polypeptides one of which has a highly reiterated amino acid sequence. Nucleic Acids Research 12:2473–2487
    [Google Scholar]
  40. Rixon F. J., Mcgeoch D. J. 1985; Detailed analysis of the mRNAs mapping in the short unique region of herpes simplex virus type 1. Nucleic Acids Research 13:953–973
    [Google Scholar]
  41. Rixon F. J., Campbell M. E., Clements J. B. 1982; The immediate-early mRNA that encodes the regulatory polypeptide Vmw175 of herpes simplex virus type 1 is unspliced. EMBO Journal 1:1273–1277
    [Google Scholar]
  42. Sears A. E., Halliburton I. W., Meignier B., Silver S., Roizman B. 1985; Herpes simplex virus 1 mutant deleted in the α 22 gene: growth and gene expression in permissive and restrictive cells and establishment of latency in mice. Journal of Virology 55:338–346
    [Google Scholar]
  43. Taylor P. 1984; A fast homology program for aligning biological sequences. Nucleic Acids Research 12:447–456
    [Google Scholar]
  44. Timbury M. C., Subak-Sharpe J. H. 1973; Genetic interactions between temperature-sensitive mutants of types 1 and 2 herpes simplex virus. Journal of General Virology 18:347–357
    [Google Scholar]
  45. Umene K., Enquist L. W. 1985; Isolation of novel herpes simplex virus type 1 derivatives with tandem duplications of DNA encoding immediate-early mRN A-5 and an origin of replication. Journal of Virology 53:607–615
    [Google Scholar]
  46. Watson R. J., Clements J. B. 1980; A herpes simplex virus type 1 function continuously required for early and late virus RNA synthesis. Nature, London 285:329–330
    [Google Scholar]
  47. Watson R. J., Vande Woude G. F. 1982; DNA sequence of an immediate-early gene (IEmRNA-5) of herpes simplex virus type 1. Nucleic Acids Research 10:979–991
    [Google Scholar]
  48. Watson R. J., Preston C. M., Clements J. B. 1979; Separation and characterization of herpes simplex virus type 1 immediate-early mRNAs. Journal of Virology 31:42–52
    [Google Scholar]
  49. Watson R. J., Weis J. H., Salstrom J. S., Enquist L. W. 1982; Herpes simplex virus type-1 glycoprotein D gene: nucleotide sequence and expression in Escherichia coli. Science 218:381–384
    [Google Scholar]
  50. Whitton J. L., Clements J. B. 1984; The junctions between the repetitive and the short unique sequences of the herpes simplex virus genome are determined by the polypeptide-coding regions of the two spliced immediate- early mRNAs. Journal of General Virology 65:451–466
    [Google Scholar]
  51. Wildy P. 1955; Recombination with herpes simplex virus. Journal of General Microbiology 13:346–360
    [Google Scholar]
  52. Wilkie N. M., Stow N. D., Marsden H. S., Preston V., Cortini R., Timbury M. C., Subak-Sharpe J. H. 1977; Physical mapping of herpes simplex virus coded functions and polypeptides by marker rescue and analysis of HSV-l/HSV-2 intertypic recombinants. In Oncogenesis and Herpesviruses III vol I pp. 11–31 Edited by De G. The Henle W., Rapp F. Lyon: IARC Scientific Publications; no 24
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-67-4-597
Loading
/content/journal/jgv/10.1099/0022-1317-67-4-597
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error