1887

Abstract

Summary

In particles of turnip yellow mosaic virus (TYMV), the interactions between proteins are particularly strong when compared to those between proteins in some other icosahedral viruses. Intact RNA is released from TYMV particles on freezing and this process has been studied by examining several parameters that influence cryodenaturation such as dehydration, pressure, aggregation and the presence of protective agents (glycerol and ammonium sulphate). Pressure of 1.5 × 10 Pa had no effect on virus particles whereas dehydration of a virus suspension had a drastic effect. Aggregate formation resulting from freezing of solutions containing high virus concentrations seems to be a prerequisite for RNA release; cryoprotective agents hindered RNA release.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-67-3-557
1986-03-01
2021-08-05
Loading full text...

Full text loading...

/deliver/fulltext/jgv/67/3/JV0670030557.html?itemId=/content/journal/jgv/10.1099/0022-1317-67-3-557&mimeType=html&fmt=ahah

References

  1. Aggerbeck L. P., Gulik-Krzywicki T. 1982; Freeze-fracture electron microscopic and low temperature X-ray scattering studies of the effect of cryofixation upon serum low density lipoprotein structure. Journal of Microscopy 126:243–252
    [Google Scholar]
  2. Antonsson B., Leberman R. 1982; Stabilization of the ternary complex EF-Tu-GTPvalyl-tRNAval by ammonium salts. Biochimie 64:1035–1040
    [Google Scholar]
  3. Ashcroft N. W., Lekner J. 1966; Structure and resistivity of liquid metals. Physical Review 145:83–90
    [Google Scholar]
  4. Augier De Montgremier H. 1964; Mise en évidence d’une libération spontanée d’acide ribonucléique infectieux par le virus de la mosaïque jaune du navet au cours de sa diffusion sur gel d’agar. Phytiatrie-phytopharmacie 13:157–162
    [Google Scholar]
  5. Bachmann L., Schmitt-Fumian W. W. 1973; Spray-freeze-etching of dissolved macromolecules, emulsions and subcellular components. In Freeze-Etching Techniques and Applications pp. 63–72 Edited by Benedetti E. L., Favard P. Paris: Société Française de Microscopie F.lectronique;
    [Google Scholar]
  6. Bello J. 1985; Stability of native protein conformation in the dry state. Trends in Biochemical Sciences 10:110–111
    [Google Scholar]
  7. Bockstahler L. E., Kaesberg P. 1965; Isolation and properties of RNA from bromegrass mosaic virus. Journal of Molecular Biology 13:127–137
    [Google Scholar]
  8. Chauvin C., Pfeiffer P., WITZ J., Jacrot B. 1978; Structural polymorphism of bromegrass mosaic virus: a neutron small angle scattering investigation. Virology 88:133–148
    [Google Scholar]
  9. Cuillel M., Zulauf M., Jacrot B. 1983; Self-assembly of brome mosaic virus protein into capsids. Journal of Molecular Biology 164:589–603
    [Google Scholar]
  10. Douzou P. 1979; The study of enzyme mechanisms by a combination of cosolvent, low-temperature and high- pressure techniques. Quarterly Reviews of Biophysics 12:521–569
    [Google Scholar]
  11. Fahey P. F., Krupke D. W., Beams J. W. 1969; Effect of pressure on the apparent specific volume of proteins. Proceedings of the National Academy of Sciences, U.S.A 63:548–555
    [Google Scholar]
  12. Favre A., Morel C., Scherrer K. 1975; The secondary structure and poly(A) content of globin messenger RNA as a pure RNA and in polysome-derived ribonucleoprotein complexes. European Journal of Biochemistry 57:147–157
    [Google Scholar]
  13. Franks F. 1972; The properties of water. In Water: A Comprehensive Treatise vol. 1 pp. 115–149 Edited by Franks F. New York & London: Plenum Press;
    [Google Scholar]
  14. Giege R., Lorber B., Ebel J. P., Moras D., Thierry J. C. 1980; Cristallisation du complexe formé entre l’aspartate-tRNA de levure et son aminoacyl-tRN A synthetase spécifique. Comptes rendus hebdomadaires des séances de l’Académie des sciences, Série D 291:393–396
    [Google Scholar]
  15. Harvey J. D. 1973; Diffusion coefficients and hydrodynamic radii of three spherical RNA viruses by laser light scattering. Virology 56:365–368
    [Google Scholar]
  16. Hirth L., Basset J., Croissant O. 1957; Structure et propriétés des particules élémentaires du virus de la mosaïque du tabac I. Résultats préliminaires obtenus au moyen des hautes pressions. Annales de l’lnstitut Pasteur 93:309–322
    [Google Scholar]
  17. Hirth L., Horn P., Strazielle C. 1965; Structure et propriétés de l’acide ribonucléique extrait du virus de la mosaïque jaune du navet. Journal of Molecular Biology 13:720–734
    [Google Scholar]
  18. Icardona N. L., Kaesberg P. 1964; A pH-induced structural change in brome grass mosaic virus. Biophysical Journal 4:11–21
    [Google Scholar]
  19. Jacrot B., Chauvin C., Witz J. 1977; Comparative neutron small-angle scattering study of small spherical RNA viruses. Nature, London 266:417–421
    [Google Scholar]
  20. Kaper J. M. (editor) 1975; The Chemical Basis of Virus Structure, Dissociation and Reassembly. Frontiers of Biology Series vol. 39: Edited by Neuberger A., Tatum E. L. pp. 1–485 Amsterdam New York: North-Holland/ American Elsevier;
    [Google Scholar]
  21. Kaper J. M., Alting Siberg R. 1969; The effect of freezing on the structure of turnip yellow mosaic virus and a number of other simple plant viruses. Cryobiology 5:366–374
    [Google Scholar]
  22. Kaper J. M., Litjens E. L. 1966; The ribonucleic acid content of turnip yellow mosaic virus. Biochemistry 5:1612–1617
    [Google Scholar]
  23. Katouzian-safadi M., Favre A., Haenni A. L. 1980a; RNA liberation from turnip yellow mosaic virus during freezing and thawing in vitro. In Biological Implications of Protein–Nucleic Acid Interactions pp 274–282 Edited by Augustyniak J. Poznan: Adam Mickiewicz University Press Amsterdam, London Oxford: Elsevier/North-Holland;
    [Google Scholar]
  24. Katouzian-Safadi M., Favre A., Haenni A. L. 1980b; Effect of freezing and thawing on the structure of turnip yellow mosaic virus. European Journal of Biochemistry 112:479–486
    [Google Scholar]
  25. Katouzian-Safadi M., Berthet-Colominas C., Witz J., Kruse J. 1983; Evidence for the presence of a hole in the capsid of turnip yellow mosaic virus after RNA release by freezing and thawing. European Journal of Biochemistry 137:47–55
    [Google Scholar]
  26. Keeling J., Matthews R. E. F. 1982; Mechanism for release of RNA from turnip yellow mosaic virus at high pH. Virology 119:214–218
    [Google Scholar]
  27. Keeling J., Collins E. R., Matthews R. E. F. 1979; Behaviour of turnip yellow mosaic virus nucleoproteins under alkaline conditions. Virology 97:100–111
    [Google Scholar]
  28. Klug A., Longley W., Leberman. R. 1966; Arrangement of protein subunits and the distribution of nucleic acid in turnip yellow mosaic virus. Journal of Molecular Biology 15:315–343
    [Google Scholar]
  29. Lane L. C. 1974; The bromoviruses. Advances in Virus Research 19:151–220
    [Google Scholar]
  30. Leberman R. 1966; The isolation of plant viruses by means of ‘simple’ coacervates. Virology 30:341–347
    [Google Scholar]
  31. Lehmann M. S., Zaccai G. 1984; Neutron small-angle scattering studies of ribonuclease in mixed aqueous solutions and determination of the preferentially bound water. Biochemistry 23:1939–1942
    [Google Scholar]
  32. Le Pecq J. B. 1971; Use of ethidium bromide for separation and determination of nucleic acids of various conformational forms and measurements of their associated enzymes. Methods of Biochemical Analysis 20:41–86
    [Google Scholar]
  33. Lin Y., Raymond J. A., Duman J. G., Devries A. L. 1976; Compartmentalization of NaCl in frozen solutions of antifreeze glycoproteins. Cryobiology 13:334–340
    [Google Scholar]
  34. Markham R. 1951; Physicochemical studies of the turnip yellow mosaic virus. Discussions of the Faraday Society 11:221–227
    [Google Scholar]
  35. Matthews R. E. F. 1960; Properties of nucleoprotein fractions isolated from turnip yellow mosiac virus preparations. Virology 12:521–539
    [Google Scholar]
  36. Matthews R. E. F. 1981; Portraits of viruses: turnip yellow mosaic virus. Intervirology 15:121–144
    [Google Scholar]
  37. Matthews R. E. F., Witz J. 1985; Uncoating of turnip yellow mosaic virus RNA in vivo. Virology 144:318–327
    [Google Scholar]
  38. Moor H., Mühlethaler K. 1973; Fine structure in frozen-etched yeast cells. Journal of Cell Biology 17:609–628
    [Google Scholar]
  39. Pleij C. W. A., Mellema J. R., Noort A., Bosch L. 1977; The occurrence of the coat protein messenger RNA in the minor components of turnip yellow mosiac virus. FEBS Letters 80:19–22
    [Google Scholar]
  40. Porter A., Carey N., Fellner P. 1974; Presence of a large poly(rC) tract within the RNA of encephalomyocarditis virus. Nature, London 248:675–678
    [Google Scholar]
  41. Quacquarelli A., Piazzolla A., Vovlas C. 1972; Freezing in the production of artificial top component of chicory yellow mottle virus. Journal of General Virology 17:147–156
    [Google Scholar]
  42. Riehle U., Hoechli M. 1973; The theory and technique of high pressure freezing. In Freeze-Etching Techniques and Applications pp. 32–61 Edited by Benedetti E. L., Favard P. Paris: Société Française de Microscopie Electronique;
    [Google Scholar]
  43. Sehgal O. P., Das P. D. 1975; Effect of freezing on conformation and stability of the virions of southern bean mosaic virus. Virology 64:180–186
    [Google Scholar]
  44. Van Venrooij G. E. P. M., Aertsen A. M. H. J., Hax W. M. A., Ververgaert P. H. J. T., Verhoeven J. J. 1975; Freeze-etching – freezing velocity and crystal size at different locations in samples. Cryobiology 12:46–61
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-67-3-557
Loading
/content/journal/jgv/10.1099/0022-1317-67-3-557
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error