1887

Abstract

Summary

Monoclonal antibodies were prepared from mice immunized with an 18-residue synthetic peptide with an amino acid sequence from a major antigenic sequence involved in the neutralization of type 3 poliovirus. Approximately 250 hybridomas secreted antibodies that reacted with the peptide but not the virus, two antibodies reacted with the virus but not the peptide and no antibody reacted with both. Conversely 26 monoclonal antibodies prepared from mice immunized with type 3 poliovirus and known to be directed against the appropriate sequence on the virus, generally failed to react with the peptide. These results might be expected if only a small proportion of the free or coupled peptide molecules adopt molecular conformations which resemble that of the homologous antigenic site in the virus. Antibodies specific for other antigens occasionally reacted well with the synthetic peptides, indicating that antibodies may bind to peptides of inappropriate sequence. The identification of antigenic sites by the use of synthetic peptides therefore requires considerable caution.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-67-11-2527
1986-11-01
2021-10-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/67/11/JV0670112527.html?itemId=/content/journal/jgv/10.1099/0022-1317-67-11-2527&mimeType=html&fmt=ahah

References

  1. Blondel B., Akacem O., Crainic R., Couillin P., Horodniceanu F. 1983; Detection by monoclonal antibodies of an antigenic determinant critical for poliovirus neutralization present on VP1 and on heat inactivated virions. Virology 126:707–710
    [Google Scholar]
  2. Blondel B., Crainic R., Fichot O., Dufraisse G., Candrea A., Diamond D., Girard M., Horaud F. 1986; Mutations conferring resistance to neutralisation with monoclonal antibodies in type 1 poliovirus can be located outside or inside the antibody binding site. Journal of Virology 57:81–90
    [Google Scholar]
  3. Brown E., Sheppard R. C., Williams B. J. 1983; Peptide synthesis. Part 5. Solid-phase synthesis of (15-leucine) little gastrin. Journal of the Chemical Society Perkins Transactions 1:1161–1167
    [Google Scholar]
  4. Chow M., Yabrov R., Bittle J., Hogle J., Baltimore D. 1985; Synthetic peptides from four separate regions of the poliovirus type 1 capsid protein VP1 induce neutralising antibodies. Proceedings of the National Academy of Sciences, U,. S,. A 82:910–914
    [Google Scholar]
  5. Diamond D. D., Jameson B. A., Bonin J., Kohara M., Abe S., Itoh H., Komatsu T., Arita M., Kuge S., Nomoto A., Osterhaus A. D. M. E., Crainic R., Wimmer E. 1985; Antigenic variation and resistance to neutralisation in poliovirus type 1. Science 229:1090–1093
    [Google Scholar]
  6. Dillner J., Sternas L., Kallin B., Alexander H., Ehlin-Henricksson B., Jornvall H., Klein G., Lerner R. 1984; Antibodies against a synthetic peptide identify the Epstein-Barr virus-determined nuclear antigen. Proceedings of the National Academy of Sciences, U,. S,. A 81:4652–4656
    [Google Scholar]
  7. Emini E. A., Jameson B. A., Lewis A. J., Larsen G. R., Wimmer E. 1982; Poliovirus neutralization epitopes: analysis and localization with monoclonal antibodies. Journal of Virology 43:997–1005
    [Google Scholar]
  8. Emini E. A., Jameson B. A., Wimmer E. 1983; Priming for and production of anti-poliovirus neutralizing antibodies by synthetic peptides. Nature, London 304:699–703
    [Google Scholar]
  9. Evans D. M. A., Minor P. D., Schild G. C., Almond J. W. 1983; Critical role of an eight amino acid sequence of VP1 in the neutralization of poliovirus type 3. Nature, London 304:459–462
    [Google Scholar]
  10. Ferguson M., Yi-Hua Qui, Minor P. D., Magrath D. L, Spitz M., Schild G. C. 1982; Monoclonal antibodies specific for the Sabin vaccine strain of poliovirus 3. Lancet ii:122–124
    [Google Scholar]
  11. Ferguson M., Minor P. D., Magrath D. I., Yi-Hua Qui, Spitz M., Schild G. C. 1984; Neutralization epitopes on poliovirus type 3 particles: an analysis using monoclonal antibodies. Journal of General Virology 65:197–201
    [Google Scholar]
  12. Ferguson M., Evans D. M. A., Magrath D. I., Minor P. D., Almond J. W., Schild G. C. 1985; Induction by synthetic peptides of broadly reactive, type specific neutralising antibody to poliovirus type 3. Virology 143:505–515
    [Google Scholar]
  13. Geyson H. M., Meloen R. H., Barteling S. J. 1984; Use of peptide synthesis to probe viral antigens for epitopes to a resolution of a single amino acid. Proceedings of the National Academy of Sciences, U,. S,. A 81:3998–4002
    [Google Scholar]
  14. Hogle J. M., Chow M., Filman D. J. 1985; The three dimensional structure of poliovirus at 2.9 Å resolution. Science 229:1358–1365
    [Google Scholar]
  15. Icenogle J. P., Minor P. D., Ferguson M., Hogle J. M. 1986; Modulation of the humoral response to a 12 amino acid site on the poliovirus virion. Journal of Virology (in press)
    [Google Scholar]
  16. Minor P. D., Schild G. C., Ferguson M., Mackay A., Magrath D. I., John A., Yates P. J., Spitz M. 1982; Genetic and antigenic variation in type 3 polioviruses: characterization of strains by monoclonal antibodies and T1 oligonucleotide mapping. Journal of General Virology 61:167–176
    [Google Scholar]
  17. Minor P. D., Schild G. C., Bootman J., Evans D. M. A., Ferguson M., Reeve P., Spitz M., Stanway G., Cann A.J., Hauptmann R., Clarke L. D., Mountford R. C., Almond J. W. 1983; Location and primary structure of a major antigenic site for poliovirus neutralisation. Nature, London 301:674–679
    [Google Scholar]
  18. Minor P. D., Evans D. M. A., Ferguson M., Schild G. C., Westrop G., Almond J. W. 1985; Principal and subsidiary antigenic sites of VP1 involved in the neutralization of poliovirus type 3. Journal of General Virology 66:1159–1165
    [Google Scholar]
  19. Minor P. D., Ferguson M., Evans D. M. A., Almond J. W., Icenogle J. P. 1986; Antigenic structure of polioviruses of serotypes 1, 2 and 3. Journal of General Virology 67:1283–1291
    [Google Scholar]
  20. Neurath A. R., Rent S. B. H., Strick N. 1984; Monoclonal antibodies to hepatitis B surface antigen (HBsAG) with anti-a specificity recognise a synthetic peptide analogue (S135-155) with unmodified lysine (141). Journal of Virological Methods 9:341–346
    [Google Scholar]
  21. Niman H. L., Houghten R. A., Walker L. E., Reisfeld R. A., Wilson I. A., Hogle J. M., Lerner R. A. 1983; Generation of protein-reactive antibodies by short peptides is an event of high frequency: implications for the structural basis of immune recognition. Proceedings of the National Academy of Sciences, U.S.A. 80:4949–4953
    [Google Scholar]
  22. Van Der Werf S., Wychowski C., Bruneau P., Blondel B., Crainic R., Horodniceanu F., Girard M. 1983; Location of a poliovirus type 1 neutralisation epitope in viral capsid polypeptide VP1. Proceedings of the National Academy of Sciences, U,. S,. A 80:5080–5084
    [Google Scholar]
  23. Wychowski C., Van Der Werf S., Siffert O., Crainic R., Bruneau P., Girard M. 1983; A poliovirus type 1 neutralization epitope is located within amino acid residues 93 to 104 of viral capsid polypeptide VP1. EMBO Journal 2:2019–2024
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-67-11-2527
Loading
/content/journal/jgv/10.1099/0022-1317-67-11-2527
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error