1887
Preview this article:

There is no abstract available.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-67-11-2287
1986-11-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/67/11/JV0670112287.html?itemId=/content/journal/jgv/10.1099/0022-1317-67-11-2287&mimeType=html&fmt=ahah

References

  1. Abarzúa P., Marians K. J. 1984; Enzymatic techniques for the isolation of random single-base substitutions in vitro at high frequency. Proceedings of the National Academy of Sciences, U.S.A. 81:2030–2034
    [Google Scholar]
  2. Adelman J. P., Hayflick J. S., Vasser M., Seeburg P. H. 1983; In vitro deletional mutagenesis for bacterial production of the 20, 000-dalton form of human pituitary growth hormone. DNA 2:183–193
    [Google Scholar]
  3. Amann E., Brosius J., Ptashne M. 1983; Vectors bearing a hybrid trp-lac promoter useful for regulated expression of cloned genes in Escherichia coli. Gene 25:167–178
    [Google Scholar]
  4. Ambrose B. J. B., Pless R. C. 1985; Analysis of DNA sequences using a single chemical cleavage procedure. Biochemistry 24:6194–6200
    [Google Scholar]
  5. Antoniou M., Guzman K., Chakraborty S., Banerjee M. R. 1985; A generally applicable improved method for preparation of single-stranded cDNA probes from clones constructed in M13 vectors. Journal of Biochemical and Biophysical Methods 11:203–212
    [Google Scholar]
  6. Aoyama A., Hamatake R. K., Hayashi M. 1983; In vitro synthesis of bacteriophage ϕ X174 by purified components. Proceedings of the National Academy of Sciences, U.S.A. 80:4195–4199
    [Google Scholar]
  7. Arai N., Polder L., Arai K., Kornberg A. 1981; Replication of ϕ X174 DNA with purified enzymes. II. Multiplication of the duplex form by coupling of continuous and discontinuous synthetic pathways. Journal of Biological Chemistry 256:5239–5246
    [Google Scholar]
  8. Armstrong J., Hewitt J. A., Perham R. N. 1983; Chemical modification of the coat protein in bacteriophage fd and orientation of the virion during assembly and disassembly. EMBO Journal 2:1641–1646
    [Google Scholar]
  9. Artz S., Holzschu D., Blum P., Shand R. 1983; Use of M13mp phages to study gene regulation, structure and function: cloning and recombinational analysis of genes of the Salmonella typhimurium histidine operon. Gene 26:147–158
    [Google Scholar]
  10. Baas P. D. 1985; DNA replication of single-stranded Escherichia coli DNA phages. Biochimica et biophysica acta 825:111–139
    [Google Scholar]
  11. Baldari C., Cesareni G. 1985; Plasmids pEMBLY: new single-stranded shuttle vectors for the recovery and analysis of yeast DNA sequences. Gene 35:27–32
    [Google Scholar]
  12. Barnes W. M., Bevan M. 1983; Kilo-sequencing: an ordered strategy for rapid DNA sequence data acquisition. Nucleic Acids Research 11:349–368
    [Google Scholar]
  13. Bauer C. E., Hesse S. D., Waechter-Brulla D. A., Lynn S. P., Gumport R. I., Gardner J. F. 1985; A genetic enrichment for mutations constructed by oligodeoxynucleotide-directed mutagenesis. Gene 37:73–81
    [Google Scholar]
  14. Bayer M. E., Bayer M. H. 1986; Effects of bacteriophage fd infection on Escherichia coli HB11 envelope: a morphological and biochemical study. Journal of Virology 57:258–266
    [Google Scholar]
  15. Beck E., Zink B. 1981; Nucleotide sequence and genome organisation of filamentous bacteriophages f1 and fd. Gene 16:35–58
    [Google Scholar]
  16. Been M. D., Champoux J. J. 1983; Cutting of M13mp7 phage DNA and excision of Cloned single-stranded sequences by restriction endonucleases. Methods in Enzymology 101:90–98
    [Google Scholar]
  17. Blankenstein T., Zoebelein G., Krawinkel U. 1984; Analysis of immunoglobulin heavy chain V-region genes belonging to the V NP-gene family. Nucleic Acids Research 12:6887–6900
    [Google Scholar]
  18. Boeke J. D. 1981; One and two codon insertion mutants of bacteriophage f1. Molecular & General Genetics 181:288–291
    [Google Scholar]
  19. Boeke J. D., Vovis O. F., Zinder N. D. 1979; Insertion mutant of bacteriophage f1 sensitive to Eco RI. Proceedings of the Rational Academy of Sciences, U.S.A. 76:2699–2702
    [Google Scholar]
  20. Bolivar F. 1978; Construction and characterization of new cloning vehicles. III. Derivates of plasmid pBR322 carrying unique Eco RI sites for selection of Eco RI generated recombinant DNA molecules. Gene 4:121–136
    [Google Scholar]
  21. Bolivar F., Betlach M., Heyneker H. L., Shine J., Rodriguez R., Boyer H. W. 1977; Origin of replication of pBR345 plasmid DNA. Proceedings of the National Academy of Sciences, U.S.A. 74:5265–5269
    [Google Scholar]
  22. Breter H. I., Ferguson J., Peterson T. A., Reed S. I. 1983; Isolation and transcriptional characterization of three genes which function at start, the controlling event of the Saccharomyces cerevisiae cell division cycle: CDC36, CDC37, and CDC39. Molecular and Cellular Biology 3:881–891
    [Google Scholar]
  23. Brown D. M., Frampton J., Goelet P., Karn J. 1982; Sensitive detection of RNA using strand-specific M13 probes. Gene 20:139–144
    [Google Scholar]
  24. Burke J. F. 1984; High-sensitivity S1 mapping with single-stranded 32P-DNA probes synthesized from bacteriophage M13mp templates. Gene 30:63–68
    [Google Scholar]
  25. Carter P., Bedouelle H., Winter G. 1985; Improved oligonucleotide site-directed mutagenesis using M13 vectors. Nucleic Acids Research 13:4431–4443
    [Google Scholar]
  26. Chan V. L., Smith M. 1984; In vitro generation of specific deletions in DNA cloned in M13 vectors using synthetic oligodeoxyribonucleotides: mutants in the 5′-flanking region of the yeast alcohol dehydrogenase II gene. Nucleic Acids Research 12:2407–2419
    [Google Scholar]
  27. Chen E. Y., Seeburg P. H. 1985; Supercoil sequencing: a fast and simple method for sequencing plasmid DNA. DNA 4:165–170
    [Google Scholar]
  28. Cleary J. M., Ray D. S. 1981; Deletion analysis of the cloned replication origin region from bacteriophage M13. Journal of Virology 40:197–203
    [Google Scholar]
  29. Close T. J., Christman J. L., Rodriguez R. L. 1983; M13 bacteriophage and pUC plasmids containing DNA inserts but still capable of β-galactosidase α-complementation. Gene 23:131–136
    [Google Scholar]
  30. Collins J., Hohn B. 1978; Cosmids: a type of plasmid gene-cloning vector that is packageable in vitro in bacteriophage λ heads. Proceedings of the National Academy of Sciences, U.S.A. 75:4242–4246
    [Google Scholar]
  31. Dagert M., Ehrlich S. D. 1979; Prolonged incubation in calcium chloride improves the competence of Escherichia coli cells. Gene 6:23–28
    [Google Scholar]
  32. Dale R. M. K., Mcclure B. A., Houchins J. P. 1985; A rapid single-stranded cloning strategy for producing a sequential series of overlapping clones for use in DNA sequencing: application to sequencing the com mitochondrial 18S rDNA. Plasmid 13:31–40
    [Google Scholar]
  33. De Boer H. A., Comstock L. J., Vasser M. 1983; The tac promoter: a functional hybrid derived from the trp and lac promoters. Proceedings of the National Academy of Sciences, U.S.A. 80:21–25
    [Google Scholar]
  34. Deininger P. L. 1983; Approaches to rapid DNA sequence analysis. Analytical Biochemistry 135:247–263
    [Google Scholar]
  35. Demopoulos N., Davies R. W., Scazzocchio C. 1982; Use of a rapid DNA sequencing system to demonstrate the induction of frameshift mutations by bleomycin. FEBS Letters 146:376–380
    [Google Scholar]
  36. Dente L., Cesarini G., Cortese R. 1983; pEMBL: a new family of single stranded plasmids. Nucleic Acids Research 11:1645–1655
    [Google Scholar]
  37. Ditta G., Stanfield S., Corbin D., Helinski D. R. 1980; Broad host range DNA cloning system for Gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. Proceedings of the National Academy of Sciences, U.S.A. 77:7347–7351
    [Google Scholar]
  38. Dotto G. P., Horiuchi K. 1981; Replication of a plasmid containing two origins of bacteriophage f1. Journal of Molecular Biology 153:169–176
    [Google Scholar]
  39. Dotto G. P., Zinder N. D. 1983; The morphogenetic signal of bacteriophage f1. Virology 130:252–256
    [Google Scholar]
  40. Dotto G. P., Zinder N. D. 1984a; Reduction of the minimal sequence for initiation of DNA synthesis by qualitative or quantitative changes of an initiator protein. Nature, London 311:279–280
    [Google Scholar]
  41. Dotto G. P., Zinder N. D. 1984b; Increased intracellular concentration of an initiator protein markedly reduces the minimal sequence required for initiation of DNA synthesis. Proceedings of the National Academy of Sciences, U.S.A. 81:1336–1340
    [Google Scholar]
  42. Dotto G. P., Enea V., Zinder N. D. 1981; Functional analysis of bacteriophage f1 intergenic region. Virology 114:463–473
    [Google Scholar]
  43. Dotto G. P., Horiuchi K., Jakes K. S., Zinder N. D. 1982; Replication origin of bacteriophage f1. Two signals required for its function. Journal of Molecular Biology 162:335–343
    [Google Scholar]
  44. Dotto G. P., Horiuchi K., Zinder N. D. 1984; The functional origin of bacteriophage f1 DNA replication. Its signals and domains. Journal of Molecular Biology 172:507–521
    [Google Scholar]
  45. Eggerding F. A., Pierce W. C. 1983; Construction of a cloned library of adenovirus DNA fragments in bacteriophage M13. Journal of Biological Chemistry 258:10090–10097
    [Google Scholar]
  46. Enea V., Zinder N. D. 1975; A deletion mutant of bacteriophage f1 containing no intact cistrons. Virology 68:105–114
    [Google Scholar]
  47. Enea V., Horiuchi K., Turgeon B. G., Zinder N. D. 1977; Physical map of defective interfering particles of bacteriophage f1. Journal of Molecular Biology 111:395–414
    [Google Scholar]
  48. Etzerodt M., Mikkelsen T., Pedersen F. S., Kjeldgaard N. O., Jorgensen P. 1984; The nucleotide sequence of the Akv murine leukemia virus genome. Virology 134:196–207
    [Google Scholar]
  49. Everett R. D., Chambon P. 1982; A rapid and efficient method for region- and strand-specific mutagenesis of cloned DNA. EMBO Journal 1:433–437
    [Google Scholar]
  50. Fuke M., Hendrix L. C., Bollon A. P. 1984; Pseudogene IFN-alpha L: removal of the stop codon in the signal sequence permits expression of active human interferon. Gene 32:135–140
    [Google Scholar]
  51. Fulford W., Model P. 1984; Gene X of bacteriophage f1 is required for phage DNA synthesis. Mutagenesis of in-frame overlapping genes. Journal of Molecular Biology 178:137–153
    [Google Scholar]
  52. Fuller F. 1982; A family of cloning vectors containing the lac UV5 promoter. Gene 19:43–54
    [Google Scholar]
  53. Gardner R. C., Howarth A. J., Hahn P., Brown-Luedi M., Shepherd R. J., Messing I. 1981; The complete nucleotide sequence of an infectious clone of cauliflower mosaic virus by M13mp7 shotgun sequencing. Nucleic Acids Research 9:2871–2888
    [Google Scholar]
  54. Geider K., Kornberg A. 1974; Conversion of the M13 viral single strand to the double-stranded replicative forms by purified proteins. Journal of Biological Chemistry 249:3999–4005
    [Google Scholar]
  55. Geider K., Beck E., Schaller H. 1976; An RNA transcribed from DNA at the origin of phage fd single strand to replicative form conversion. Proceedings of the National Academy of Sciences, U.S.A. 75:645–649
    [Google Scholar]
  56. Geider K., Hohmeyer C., Haas R., Meyer T. F. 1985; A plasmid cloning system utilizing replication and packaging functions of the filamentous bacteriophage fd. Gene 33:341–349
    [Google Scholar]
  57. Gentz R., Langner A., Chang A. C. Y., Cohen S. N., Bujard H. 1981; Cloning and analysis of strong promoters is made possible by the downstream placement of an RNA termination signal. Proceedings of the National Academy of Sciences, U.S.A. 78:4936–4940
    [Google Scholar]
  58. Georges F., Brousseau R., Michniewicz J., Prefontaine G., Stawinski J., Sung W., Wu R., Narang S. A. 1984; Synthesis of a human insulin gene. VII. Synthesis of preproinsulin-like human DNA, its cloning and expression in M13 bacteriophage. Gene 27:201–211
    [Google Scholar]
  59. Geraghty D., Peifer M. A., Rubenstein I., Messing J. 1981; The primary structure of a plant storage protein: zein. Nucleic Acids Research 9:5163–5174
    [Google Scholar]
  60. Grant R., Webster R. E. 1984; Minor protein content of the gene V protein/phage single-stranded DNA complex of the filamentous bacteriophage fl. Virology 133:315–328
    [Google Scholar]
  61. Griffith J., Kornberg A. 1974; Mini M13 bacteriophage: circular fragments of M13 DNA are replicated and packaged during normal infections. Virology 59:139–152
    [Google Scholar]
  62. Gronenborn B., Messing J. 1978; Methylation of single-stranded DNA in vitro introduces new restriction endonuclease cleavage sites. Nature, London 272:375–376
    [Google Scholar]
  63. Grundström T., Zenke W. M., Wintzerith M., Matthes H. W. D., Staub A., Chambon P. 1985; Oligonucleotide-directed mutagenesis by microscale ‘shot-gun’ gene synthesis. Nucleic Acids Research 13:3305–3316
    [Google Scholar]
  64. Guthrie G. D., Sinsheimer R. L. 1963; Observations on the infection of bacterial protoplasts with deoxyribonucleic acid of bacteriophage ϕ X174. Biochimica et biophysica acta 72:290–297
    [Google Scholar]
  65. Hallewell R. A., Emtage S. 1980; Plasmid vectors containing the tryptophan operon promoter suitable for efficient regulated expression of foreign genes. Gene 9:27–47
    [Google Scholar]
  66. Hanahan D. 1983; Studies on transformation of Escherichia coli with plasmids. Journal of Molecular Biology 166:557–580
    [Google Scholar]
  67. Hayes R. C., Leclerc J. E. 1983; Preferential transfection with M13mp2 RFDNA synthesized in vitro. Gene 21:1–8
    [Google Scholar]
  68. Henikoff S. 1983; Cloning exons of mapping of transcription: characterization of the Drosophila melanogaster alcohol dehydrogenase gene. Nucleic Acids Research 11:4735–4752
    [Google Scholar]
  69. Henikoff S. 1984; Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene 28:351–359
    [Google Scholar]
  70. Herrmann R., Neugebauer K., Zentgraf H., Schaller H. 1978; Transposition of a DNA sequence determining kanamycin resistance into the single-stranded genome of bacteriophage fd. Molecular & General Genetics 159:171–178
    [Google Scholar]
  71. Herrmann R., Neugebauer K., Pirkl E., Zentgraf H., Schaller H. 1980; Conversion of bacteriophage fd into an efficient single-stranded DNA vector system. Molecular & General Genetics 177:231–242
    [Google Scholar]
  72. Hines J. C., Ray D. S. 1980; Construction and characterization of new coliphage M13 vectors. Gene 11:207–218
    [Google Scholar]
  73. Hobden A. N., Read M. J., Dykes C. W., Harford S. 1985; M13 clones carrying point mutations: identification by solution hybridization. Analytical Biochemistry 144:75–78
    [Google Scholar]
  74. Hohn B. 1979; In vitro packaging of λ and cosmid DNA. Methods in Enzymology 68:299–309
    [Google Scholar]
  75. Hong G. F. 1981; A method for sequencing single-stranded cloned DNA in both directions. Bioscience Reports 1:243–252
    [Google Scholar]
  76. Hu N., Messing J. 1982; The making of strand-specific M13 probes. Gene 17:271–277
    [Google Scholar]
  77. Johnston S., Lee J.-H., Ray D. S. 1985; High-level expression of M13 gene II protein from an inducible polycistronic messenger RNA. Gene 34:137–145
    [Google Scholar]
  78. Kadonaga J. T., Knowles J. R. 1985; A simple and efficient method for chemical mutagenesis of DNA. Nucleic Acids Research 13:1733–1745
    [Google Scholar]
  79. Karn J., Brenner S., Barnett L. 1983; New bacteriophage lambda vectors with positive selection for cloned inserts. Methods in Enzymology 101:3–19
    [Google Scholar]
  80. Kieny M. P., Lathe R., Lecocq J. P. 1983; New versatile cloning and sequencing vectors based on bacteriophage M13. Gene 26:91–99
    [Google Scholar]
  81. Kim M. H., Ray D. S. 1985; Mutational mechanisms by which an inactive replication origin of bacteriophage Ml 3 is turned on are similar to mechanisms of activation of ras proto-oncogenes. Journal of Virology 53:871–878
    [Google Scholar]
  82. Kim M. H., Hines J. C., Ray D. S. 1981; Viable deletions of the M13 complementary strand origin. Proceedings of the National Academy of Sciences, U.S.A. 78:6784–6788
    [Google Scholar]
  83. Konings R. N. H., Verhoeven E. J. M., Peeters B. P. H. 1986; pKUN, vectors for the separate production of both RNA strands of recombinant plasmids. Methods in Enzymology (in press)
    [Google Scholar]
  84. Kowalski J., Smith J. H., Ng N., Denhardt D. T. 1985; Vectors for the direct selection of cDNA clones corresponding to mammalian cell mRNA of low abundance. Gene 35:45–54
    [Google Scholar]
  85. Kramer W., Drutsa V., Jansen H.-W., Kramer B., Pflugfelder M., Fritz H. J. 1984; The gapped duplex DNA approach to oligonucleotide-directed mutation construction. Nucleic Acids Research 12:9441–9456
    [Google Scholar]
  86. Lathe R. F., Kieny M. P., Schmitt D., Curtis P., Lecocq J. P. 1984; M13 bacteriophage vectors for the expression of foreign proteins in Escherichia coli: the rabies glycoprotein. Journal of Molecular Applied Genetics 2:331–342
    [Google Scholar]
  87. Levinson A., Silver D., Seed B. 1984; Minimal size plasmids containing an M13 origin for production of single strand transducing particles. Journal of Molecular Applied Genetics 2:507–517
    [Google Scholar]
  88. Liu J., Lanclos K. D., Huisman T. H. F. 1986; Synthesis of a fixed-length single-stranded DNA probe by blocking primer extension in bacteriophage M13. Gene 42:113–117
    [Google Scholar]
  89. Looney J. E., Han J. H., Harding J. D. 1984; Screening recombinant phage M13 plaques with RNA probes: a one-step procedure which identifies clones containing either of the complementary DNA strands. Gene 27:67–73
    [Google Scholar]
  90. Lorenzetti R., Dani M., Lappi D. A., Martineau D., Casati M., Monaco L., Shatzman A., Rosenberg M., Soria M. 1985; Plasmid pFCE4, a new system of Escherichia coli expression-modification vectors. Gene 39:85–87
    [Google Scholar]
  91. Luiten R. G. M., Putterman D. G., Schoenmakers J. G. G., Konings R. N. H., Day L. A. 1985; Nucleotide sequence of the genome of Pf3, an IncP-1 plasmid-specific filamentous bacteriophage of Pseudomonas aeruginosa. Journal of Virology 56:268–276
    [Google Scholar]
  92. Lusky M., Botchan M. 1981; Inhibition of SV40 replication in simian cells by specific pBR322 DNA sequences. Nature, London 293:79–81
    [Google Scholar]
  93. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: A Laboratory Manual New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  94. Maxam A. M., Gilbert W. 1980; Sequencing end-labeled DNA with base-specific chemical cleavages. Methods in Enzymology 65:499–560
    [Google Scholar]
  95. Mead D. A., Skorupa E. S., Kemper B. 1985; Single-stranded DNA SP6 promoter plasmids for engineering mutant RNAs and proteins: synthesis of a ‘stretched’ preproparathyroid hormone. Nucleic Acids Research 13:1103–1117
    [Google Scholar]
  96. Messing J. 1983; New M13 vectors for cloning. Methods in Enzymology 101:20–78
    [Google Scholar]
  97. Messing J., Vieira J. 1982; A new pair of M13 vectors for selecting either DNA strand of double-digest restriction fragments. Gene 19:269–276
    [Google Scholar]
  98. Messing J., Gronenborn B., Muller-Hill B., Hofschneider P. H. 1977; Filamentous coliphage M13 as a cloning vehicle: insertion of a Hind II fragment of the lac regulatory region in M13 replicative form in vitro. Proceedings of the National Academy of Sciences, U.S.A. 74:3642–3646
    [Google Scholar]
  99. Messing J., Crea R., Seeburg P. H. 1981; A system for shot-gun DNA sequencing. Nucleic Acids Research 9:309–321
    [Google Scholar]
  100. Messing J., Carlson J., Hagen G., Rubenstein I., Oleson A. 1984; Cloning and sequencing of the ribosomal RNA genes in maize: the 17S region. DNA 3:31–40
    [Google Scholar]
  101. Meyer T. F., Geider K. 1979; Bacteriophage fd gene II-protein. II. Specific cleavage and relaxation of supercoiled RF from filamentous phages. Journal of Biological Chemistry 252:12642–12646
    [Google Scholar]
  102. Meyer T. F., Geider K. 1981; Cloning of bacteriophage fd gene 2 and construction of a plasmid dependent on fd gene 2 protein. Proceedings of the National Academy of Sciences, U.S.A. 78:5416–5420
    [Google Scholar]
  103. Meyer T. F., Geider K. 1982; Enzymatic synthesis of bacteriophage fd viral DNA. Nature, Iwndon 296:828832
    [Google Scholar]
  104. Meyer T. F., Geider K., Kurz C., Schaller H. 1979; Cleavage site of bacteriophage fd gene II-protein in the origin of viral strand replication. Nature, London 278:365–367
    [Google Scholar]
  105. Michel B., Ehrlich S. D. 1986; Illegitimate recombination at the replication origin of bacteriophage M13. Proceedings of the National Academy of Sciences, U.S.A. 83:3386–3390
    [Google Scholar]
  106. Miele E. A., Mills D. R., Kramer F. R. 1983; Autocatalytic replication of a recombinant RNA. Journal of Molecular Biology 171:281–295
    [Google Scholar]
  107. Misra T. K. 1985; A new strategy to create ordered deletions for rapid nucleotide sequencing. Gene 34:263–268
    [Google Scholar]
  108. Miyada C. G., Soberon X., Itakura K., Wilcox G. 1982; The use of synthetic oligodeoxyribonucleotides to produce specific deletions in the ara BAD promoter of Escherichia coli b/r. Gene 17:167–177
    [Google Scholar]
  109. Model P., Mcgill C., Mazur B., Fulford W. D. 1982; The replication of bacteriophage f1: gene V protein regulates the synthesis of gene II protein. Cell 29:329–335
    [Google Scholar]
  110. Mott J. E., Van Arsdell J., Platt T. 1984; Targeted mutagenesis in vitro: lac repressor mutations generated using AMV reverse transcriptase and dBrUTP. Nucleic Acids Research 12:4139–4152
    [Google Scholar]
  111. Myers R. M., Lerman L. S., Maniatis T. 1985; A general method for saturation mutagenesis of cloned DNA fragments. Science 229:242–247
    [Google Scholar]
  112. Nomura N., Low R. L., Ray D. S. 1982; Selective cloning of ColE1 DNA initiation sequences using the cloning vector M13 delta E101. Gene 18:239–246
    [Google Scholar]
  113. Norrander J., Kempe T., Messing J. 1983; Construction of improved M13 vectors using oligodeoxy-nucleotide-directed mutagenesis. Gene 26:101–106
    [Google Scholar]
  114. Norris K., Norris F., Christiansen L., Fiil N. 1983; Efficient site-directed mutagenesis by simultaneous use of two primers. Nucleic Acids Research 11:5103–5112
    [Google Scholar]
  115. Patton J. R., Chae C.-B. 1982; A method for isolation of a large amount of a single-stranded DNA fragment. Analytical Biochemistry 126:231–234
    [Google Scholar]
  116. Peeters B. P. H., Schoenmakers J. G. G., Konings R. N. H. 1986; Plasmid pKUN9: a versatile vector for the selective packaging of both DNA strands into single-stranded DNA containing phage-like particles. Gene 41:39–46
    [Google Scholar]
  117. Podhajska A. J., Szybalski W. 1985; Conversion of the Fok I endonuclease to a universal restriction enzyme: cleavage of the phage M13mp7 DNA at predetermined sites. Gene 40:175–182
    [Google Scholar]
  118. Poncz M., Solowiejczyk D., Ballantine M., Schwartz E., Surrey S. 1982; ‘Nonrandom’ DNA sequence analysis in bacteriophage M13 by the dideoxy chain-termination method. Proceedings of the National Academy of Sciences, U.S.A. 79:4298–4302
    [Google Scholar]
  119. Ray D. S., Hines I. C., Kim M. H., Imber R., Nomura N. 1982; M13 vectors for selective cloning of sequences specifying initiation of DNA synthesis on single-stranded templates. Gene 18:231–238
    [Google Scholar]
  120. Remaut E., Stanssens P., Fiers W. 1981; Plasmid vectors for high-efficiency expression controlled by the pL promoter of coliphage lambda. Gene 15:81–93
    [Google Scholar]
  121. Ricca G. A., Taylor J. M., Kalinyak J. E. 1982; Simple rapid method for the synthesis of radioactively labeled cDNA hybridization probes utilizing bacteriophage M13mp7. Proceedings of the National Academy of Sciences, U.S.A. 79:724–728
    [Google Scholar]
  122. Rosenthal A., Schwertner S., Hahn V., Hunger H.-D. 1985; Solid-phase methods for sequencing of nucleic acids. I. Simultaneous sequencing of different oligodeoxyribonucleotides using a new, mechanically stable anion-exchange paper. Nucleic Acids Research 13:1173–1184
    [Google Scholar]
  123. Rosenthal A., Jung R., Hunger H.-D. 1986; Optimized conditions for solid-phase sequencing: simultaneous chemical cleavage of a series of long DNA fragments immobilized on CCS anion-exchange paper. Gene 42:1–9
    [Google Scholar]
  124. Russel M., Model P. 1985; Thioredoxin is required for filamentous phage assembly. Proceedings of the National Academy of Sciences, U.S.A. 82:29–33
    [Google Scholar]
  125. Sanchez-Pescador R., Urdea M. S. 1984; Use of unpurified synthetic deoxynucleotide primers for rapid dideoxynucleotide chain termination sequencing. DNA 3:339–343
    [Google Scholar]
  126. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, U.S.A. 74:5463–5467
    [Google Scholar]
  127. Sanger F., Coulson A. R., Barrell B. G., Smith A. J. H., Roe B. A. 1980; Cloning in single-stranded bacteriophage as an aid to rapid DNA-sequencing. Journal of Molecular Biology 143:161–178
    [Google Scholar]
  128. Sanger F., Coulson A. R., Hong G. F., Hill D. F., Petersen G. B. 1982; Nucleotide sequence of bacteriophage λ DNA. Journal of Molecular Biology 162:729–773
    [Google Scholar]
  129. Schaller H. 1979; The intergenic region and the origins for filamentous phage DNA replication. Cold Spring Harbor Symposia on Quantitative Biology 43:401–408
    [Google Scholar]
  130. Schaller H., Uhlmann A., Geider K. 1976; A DNA fragment from the origin of single-strand to double-strand DNA replication of bacteriophage fd. Proceedings of the National Academy of Sciences, U.S.A. 73:49–53
    [Google Scholar]
  131. Schmidt B. J., Strasser J., Saunders C. W. 1986; A Bacillus subtilis plasmid that can be packaged as singlestranded DNA in Escherichia coli: use for oligonucleotide mutagenesis. Gene 41:331–335
    [Google Scholar]
  132. Skinner M. A., Siddell S. G. 1983; Coronavirus JHM: nucleotide sequence of the mRNA that encodes nucleocapsid protein. Nucleic Acids Research 11:5045–5054
    [Google Scholar]
  133. Slocombe P., Easton A., Boseley P., Burke D. C. 1982; High-level expression of an interferon α 2 gene cloned in phage M13mp7 and subsequent purification with a monoclonal antibody. Proceedings of the National Academy of Sciences, U.S.A. 79:5455–5459
    [Google Scholar]
  134. Smith L. M., Sanders J. Z., Kaiser R. J., Hughes P., Dodd C., Conell C. R., Heiner C., Kent S. B. H., Hood L. E. 1986; Fluorescence detection in automated DNA sequence analysis. Nature, Ixmdon 321:674–679
    [Google Scholar]
  135. Smits M. A., Jansen J., Konings R. N. H., Schoenmakers J. G. G. 1984; Initiation and termination signals for transcription in bacteriophage M13. Nucleic Acids Research 12:4071–4081
    [Google Scholar]
  136. Sollazzo M., Frank R., Cesareni G. 1985; High-level expression of RNAs and protein: the use of oligonucleotides for the precise fusion of coding-to-regulatory sequences. Gene 37:199–206
    [Google Scholar]
  137. Spratt B. G., Hedge P. J., Te Heesen S., Edelman A., Broome-Smith J. K. 1986; Kanamycin-resistant vectors that are analogues of plasmids pUC8, pUC9, pEMBL8 and pEMBL9. Gene 41:337–342
    [Google Scholar]
  138. Strathearn M. D., Low R. L., Ray D. S. 1984; Selective cloning of a DNA single-strand initiation determinant from ϕ X174 replicative-form DNA. Journal of Virology 49:178–182
    [Google Scholar]
  139. Tabor S., Richardson C. C. 1985; A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proceedings of the National Academy of Sciences, U.S.A. 82:1074–1078
    [Google Scholar]
  140. Traboni C., Ciliberto G., Cortese R. 1982; A novel method for site-directed mutagenesis: its application to an eukaryotic tRNAPro gene promoter. EMBO Journal 1:415–420
    [Google Scholar]
  141. Traboni C., Cortese R., Ciliberto G., Cesareni G. 1983; A general method to select for M13 clones carrying base pair substitution mutants constructed in vitro. Nucleic Acids Research 12:4229–4239
    [Google Scholar]
  142. Uhlmann A., Geider K. 1977; Interaction of DNA with DNA binding proteins. III. Infectivity of protein-complexed phage fd DNA in Escherichia coli spheroplasts. Biochimica et biophysica acta 474:639–645
    [Google Scholar]
  143. Van Der Ende A., Teertstra R., Weisbeek P. J. 1982; Initiation and termination of the bacteriophage ϕ X174 rolling circle DN A replication in vivo: packaging of plasmid single-stranded DN A into bacteriophage ϕ X174 coats. Nucleic Acids Research 10:6849–6863
    [Google Scholar]
  144. Van Wezenbeek P. M. G. F., Hulsebos T. J. M., Schoenmakers J. G. G. 1980; Nucleotide sequence of the filamentous bacteriophage M13 genome: comparison with phage fd. Gene 11:129–148
    [Google Scholar]
  145. Van Wezenbeek P., Verver J., Harmsen J., Vos P., Van Kammen A. 1983; Primary structure and gene organization of the middle-component of cowpea mosaic virus. EMBO Journal 2:941–946
    [Google Scholar]
  146. Vieira J., Messing J. 1982; The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19:259–268
    [Google Scholar]
  147. Vieira J., Messing J. 1986; Production of single-stranded plasmid DNA. Methods in Enzymology (in press)
    [Google Scholar]
  148. Wallace R. B., Johnson M. J., Suggs S. V., Miyoshi K., Bhatt R., Itakura K. 1981; A set of Synthetic oligodeoxyribonucleotide primers for RNA sequencing in the plasmid vector pBR322. Gene 16:21–26
    [Google Scholar]
  149. Warburton N., Boseley P. G., Porter A. G. 1983; Increased expression of a cloned gene by local mutagenesis of its promoter and ribosome binding site. Nucleic Acids Research 11:5837–5854
    [Google Scholar]
  150. Waye M. M. J., Verhoeyen M. E., Jones P. T., Winter G. 1985; EcoK selection vectors for shotgun cloning into M13 and deletion mutagenesis. Nucleic Acids Research 13:8561–8571
    [Google Scholar]
  151. Weiher H., Schaller H. 1982; Segment-specific mutagenesis: extensive mutagenesis of a lac promoter/operator element. Proceedings of the National Academy of Sciences, U.S.A. 79:1408–1412
    [Google Scholar]
  152. Wells J. A., Vasser M., Powers D. B. 1985; Cassette mutagenesis: an efficient method for generation of multiple mutations at defined sites. Gene 34:315–323
    [Google Scholar]
  153. West B. L., Babbitt P. C., Mendez B., Baxter J. D. 1984; Creatine kinase protein sequence encoded by a cDNA made from Torpedo califomica electric organ mRNA. Proceedings of the National Academy of Sciences, U.S.A. 81:7007–7011
    [Google Scholar]
  154. Williams M. E. 1985; Electronic databases. Science 228:445–456
    [Google Scholar]
  155. Willmitzer L., Dhaese P., Schreier P. H., Schmalenbach W., Van Montagu M., Schell J. 1983; Size, location and polarity of T-DNA-encoded transcripts in nopaline crown gall tumors; common transcripts in octopine and nopaline tumors. Cell 32:1045–1056
    [Google Scholar]
  156. Winberry L. K., Morris S. M. Jr, Fisch J. E., Glynias M. J., Jenik R. A., Goodridge A. G. 1983; Molecular cloning of cDNA sequences for avian malic enzyme. Nutritional and hormonal regulation of malic enzyme mRNA levels in avian liver cells in vivo and in culture. Journal of Biological Chemistry 258:1337–1342
    [Google Scholar]
  157. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mpl8 and pUC19 vectors. Gene 33:103–119
    [Google Scholar]
  158. Zagursky R. J., Berman M. L. 1984; Cloning vectors that yield high levels of single-stranded DNA for rapid DNA sequencing. Gene 27:183–191
    [Google Scholar]
  159. Zinder N. D., Boeke J. D. 1982; The filamentous phage (Ff) as vectors for recombinant DNA-a review. Gene 19:1–10
    [Google Scholar]
  160. Zinder N. D., Horiuchi K. 1985; Multiregulatory element of filamentous bacteriophages. Microbiological Reviews 49:101–106
    [Google Scholar]
  161. Zoller M. J., Smith M. 1983; Oligonucleotide-directed mutagenesis of a DNA fragment cloned into M13 vectors. Methods in Enzymology 100:468–500
    [Google Scholar]
  162. Zoller M. J., Smith M. 1984; Oligonucleotide-directed mutagenesis: a simple method using two oligonucleotide primers and a single-stranded DNA template. DNA 3:479–488
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-67-11-2287
Loading
/content/journal/jgv/10.1099/0022-1317-67-11-2287
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error