PH-dependent Fusion between the Flavivirus West Nile and Liposomal Model Membranes Free

Abstract

Summary

Fusion between purified [H]uridine-labelled West Nile virus (WNV) particles and liposomes containing RNase, was assayed by degradation of the viral RNA to trichloroacetic acid-soluble material. Fusion of virus with liposomes containing phosphatidylcholine, phosphatidylethanolamine, sphingomyelin and cholesterol (at a molar ratio of 1:1:1:1.5) was found to be dependent on pH with maximum fusion occurring at pH 6.7 and below. At pH 6.6 fusion was rapid and was essentially complete within 2 min at 37 °C. At this time, approximately 50% of the viral RNA had been degraded and increasing the concentration of liposomes or time allowed for fusion increased this percentage only slightly. Fusion was dependent on temperature, was almost totally non-leaky and was not dependent on the presence of divalent cations. The lipid composition of liposomes was found to influence both the pH optimum for fusion and the maximum degree of fusion observed. Electron microscopy was used to visualize the fusion reaction between liposomes and virus particles.

Keyword(s): fusion , liposomes , pH and West Nile flavivirus
Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-67-1-157
1986-01-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/67/1/JV0670010157.html?itemId=/content/journal/jgv/10.1099/0022-1317-67-1-157&mimeType=html&fmt=ahah

References

  1. Brandriss M. W., Schlesinger J. J. 1984; Antibody-mediated infection of P388D1 cells with 17D yellow fever virus: effects of chloroquine and cytochalasin B. Journal of General Virology 65:791–794
    [Google Scholar]
  2. Cammack N., Gould E. A. 1985; Conditions for haemolysis by flaviviruses and characterization of the haemolysin. Journal of General Virology 66:2291–2296
    [Google Scholar]
  3. Cullis P. R., de Kruijff B. 1979; Lipid polymorphism and the functional role of lipids in biological membranes. Biochimica et biophysica acta 559:399–420
    [Google Scholar]
  4. Gollins S. W., Porterfield J. S. 1984; Flavivirus infection enhancement in macrophages: radioactive and biological studies on the effect of antibody on viral fate. Journal of General Virology 65:1261–1272
    [Google Scholar]
  5. Gollins S. W., Porterfield J. S. 1985; Flavivirus infection enhancement in macrophages: an electron microscopic study of viral cellular entry. Journal of General Virology 66:1969–1982
    [Google Scholar]
  6. Gonzalez-Scarano F., Pobjecky N., Nathanson N. 1984; La Crosse bunyavirus can mediate pH-dependent fusion from without. Virology 132:222–225
    [Google Scholar]
  7. Gonzalez-Scarano F., Janssen R. S., Najjar J. A., Pobjecky N., Nathanson N. 1985; An avirulent G1 glycoprotein variant of La Crosse bunyavirus with defective fusion function. Journal of Virology 54:757–763
    [Google Scholar]
  8. Haywood A. M. 1974; Fusion of Sendai virus with model membranes. Journal of Molecular Biology 87:625–628
    [Google Scholar]
  9. Helenius A., Mellman I., Wall D., Hubbard A. 1983; Endosomes. Trends in Biochemical Sciences 8:245–250
    [Google Scholar]
  10. Hsu M. -C., Scheid A., Choppin P. W. 1983; Fusion of Sendai virus with liposomes: dependence on the viral fusion protein (F) and the lipid composition of liposomes. Virology 126:361–369
    [Google Scholar]
  11. Huang R. T. C., Rott R., Klenk H.-D. 1981; Influenza viruses cause hemolysis and fusion of cells. Virology 110:243–247
    [Google Scholar]
  12. Huang R. T. C., Dietsch E., Rott R. 1985; Further studies on the role of neuraminidase and the mechanism of low pFl dependence in influenza-induced membrane fusion. Journal of General Virology 66:295–301
    [Google Scholar]
  13. Kondor-Koch C., Burke B., Garoff H. 1983; Expression of Semliki Forest virus proteins from cloned complementary DNA. I. The fusion activity of the spike glycoprotein. Journal of Cell Biology 97:644–651
    [Google Scholar]
  14. Lentz B. R., Barrow D. A., Hoechli M. 1980; Cholesterol-phospholipid interactions in multilamellar vesicles. Biochemistry 19:1943–1954
    [Google Scholar]
  15. Maeda T., Ohnishi S. 1980; Activation of influenza virus by acidic media causes hemolysis and fusion of erythrocytes. FEBS Letters 122:283–287
    [Google Scholar]
  16. Mann E., Edwards J., Brown D. T. 1983; Polycaryocyte formation mediated by Sindbis glycoproteins. Journal of Virology 45:1083–1089
    [Google Scholar]
  17. Marsh M. 1984; The entry of enveloped viruses into cells by endocytosis. Biochemical Journal 218:1–10
    [Google Scholar]
  18. Matlin K., Reggio H., Helenius A., Simons K. 1981; The infective entry of influenza virus into MDCK-cells. Journal of Cell Biology 91:601–613
    [Google Scholar]
  19. Matlin K. S., Reggio H., Helenius A., Simons K. 1982; Pathway of vesicular stomatitis virus entry leading to infection. Journal of Molecular Biologv 156:609–631
    [Google Scholar]
  20. Meiselman N., Kohn A., Danon D. 1967; Electron microscopic study of penetration of Newcastle disease virus into cells leading to formation of polykaryocytes. Journal of Cell Science 2:71–76
    [Google Scholar]
  21. Mooney J. J., Dalrymple J. M., Alving C. R., Russell P. K. 1975; Interaction of Sindbis virus with liposomal model membranes. Journal of Virology 15:225–231
    [Google Scholar]
  22. Newman G. C., Huang C. 1975; Structural studies on phosphatidylcholine-cholesterol mixed vesicles. Biochemistry 14:3363–3370
    [Google Scholar]
  23. Rand R. P. 1981; Interacting phospholipid bilayers: measured forces and induced structural changes. Annual Review of Biophysics and Bioengineering 10:277–314
    [Google Scholar]
  24. Riedel H., Kondor-Koch C., Garoff H. 1984; Cell surface expression of fusogenic vesicular stomatitis virus G protein from cloned cDNA. EMBO Journal 3:1477–1483
    [Google Scholar]
  25. Simon S. A., McIntosh T. J., Latorre R. 1982; Influence of cholesterol on water penetration into bilayers. Science 216:65–67
    [Google Scholar]
  26. Tajima K., Gershfeld N. L. 1978; Equilibrium studies of lecithin-cholesterol interactions. II. Phase relations in surface films: analysis of the condensing effect of cholesterol. Biophysical Journal 22:489–500
    [Google Scholar]
  27. Väänänen P., Kääriäinen L. 1979; Haemolysis by two alphaviruses: Semliki Forest and Sindbis virus. Journal of General Virology 43:593–601
    [Google Scholar]
  28. Väänänen P., Kääriäinen L. 1980; Fusion and haemolysis of erythrocytes caused by three togaviruses: Semliki Forest, Sindbis and rubella. Journal of General Virology 46:467–475
    [Google Scholar]
  29. Westaway E. G., Reedman B. M. 1969; Proteins of the Group B arbovirus Kunjin. Journal of Virology 4:688–693
    [Google Scholar]
  30. Westaway E. G., Brinton M. A., Gaidamovich S. YA., Horzinek M. C., Igarashi A., Kääriäinen L., Lvov D. K., Porterfield J. S., Russell P. K., Trent D. W. 1985; Flaviviridae. Report of the Togaviridae Study Group, Vertebrate Virus Subcommittee, International Committee on Taxonomy of Viruses. Intervirology 24:183–192
    [Google Scholar]
  31. White J., Helenius A. 1980; pH-dependent fusion between the Semliki Forest virus membrane and liposomes. Proceedings of the National Academy of Sciences, U,. S,. A 77:3273–3277
    [Google Scholar]
  32. White J., Kartenbeck J., Helenius A. 1980; Fusion of Semliki Forest virus with the plasma membrane can be induced by low pH. Journal of Cell Biology 87:264–272
    [Google Scholar]
  33. White J., Matlin K., Helenius A. 1981; Cell fusion by Semliki Forest, influenza and vesicular stomatitis virus. Journal of Cell Biology 89:674–679
    [Google Scholar]
  34. White J., Helenius A., Gething M. -J. 1982a; Haemagglutinin of influenza virus expressed from a cloned gene promotes membrane fusion. Nature, London 300:658–659
    [Google Scholar]
  35. White J., Helenius A., Kartenbeck J. 1982b; Membrane fusion activity of influenza virus. EMBO Journal 1:217–222
    [Google Scholar]
  36. White J., Kielian M., Helenius A. 1983; Membrane fusion proteins of enveloped animal viruses. Quarterly Reviews of Biophysics 16:151–195
    [Google Scholar]
  37. Wilson T. M. A. 1984a; Cotranslational disassembly of tobacco mosaic virus in vitro. Virology 137:255–265
    [Google Scholar]
  38. Wilson T. M. A. 1984b; Cotranslational disassembly increases the efficiency of expression of TMV RNA in wheat germ cell-free extracts. Virology 138:353–356
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-67-1-157
Loading
/content/journal/jgv/10.1099/0022-1317-67-1-157
Loading

Data & Media loading...

Most cited Most Cited RSS feed