1887

Abstract

SUMMARY

Injection of the protease inhibitor, aprotinin, into the allantoic cavity of embryonated eggs infected at low m.o.i. with different influenza viruses and paramyxoviruses markedly reduced multiplication by at least 100-fold. Under these conditions, most viral particles produced were non-infectious and contained uncleaved glycoproteins, presumably resulting from aprotinin suppression of protease activity.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-66-7-1633
1985-07-01
2024-12-06
Loading full text...

Full text loading...

/deliver/fulltext/jgv/66/7/JV0660071633.html?itemId=/content/journal/jgv/10.1099/0022-1317-66-7-1633&mimeType=html&fmt=ahah

References

  1. Appleyard G., Davis G. B. 1983; Activation of Sendai virus infectivity by an enzyme in chicken amniotic fluid. Journal of Genera! Virology 64:813–823
    [Google Scholar]
  2. Bosch F. X., Orlich M., Klenk H.-D., Rott R. 1979; The structure of the hemagglutinin, a determinant for the pathogenicity of influenza viruses. Virology 95:197–207
    [Google Scholar]
  3. Bosch F. X., Garten W., Klenk H.-D., Rott R. 1981; Proteolytic cleavage of influenza virus hemagglutinin. Primary structure of the connecting peptide between HA1 and HA2 determines proteolytic cleavability and pathogenicity of avian influenza viruses. Virology 113:725–735
    [Google Scholar]
  4. Burnet F. M. 1936; Influenza virus on the developing egg. I. Changes associated with the development of an egg-passage strain of virus. British Journal of Experimental Pathology 17:282–293
    [Google Scholar]
  5. Dömötӧr E. 1975; Gordox treatment in hand-surgery. Therapia hungarica 23:1–4
    [Google Scholar]
  6. Dubovi E. J., Geratz J. D., Tidwell R. R. 1983; Enhancement of respiratory syncytial virus-induced cytopathology by trypsin, thrombin, and plasmin. Infection and Immunity 40:351–358
    [Google Scholar]
  7. Freidenberg G. R., White N., Cataland S., O’Doriso T. M., Solos J. F., Santiago J. V. 1981; Diabetes responsive to intravenous but not subcutaneous insulin: effectiveness of aprotinin. New England Journal of Medicine 305:363–367
    [Google Scholar]
  8. Fujinami R. S., Oldstone M. B. A. 1981; Failure to cleave measles virus fusion protein in lymphoid cells. A possible mechanism for viral persistence in lymphocytes. Journal of Experimental Medicine 154:1489–1499
    [Google Scholar]
  9. Garten W., Berk W., Nagai Y., Rott R., Klenk H.-D. 1980; Mutational changes of the protease susceptibility of glycoprotein F of Newcastle disease virus: effects on pathogenicity. Journal of General Virology 50:135–147
    [Google Scholar]
  10. Klenk H.-D., Rott R., Orlich M., Blӧdorn J. 1975; Activation of influenza A viruses by trypsin treatment. Virology 68:426–439
    [Google Scholar]
  11. Lambert D. M., Pons M. W. 1983; Respiratory syncytial virus glycoproteins. Virology 130:204–214
    [Google Scholar]
  12. Lazarowitz S. G., Choppin P. W. 1975; Enhancement of the infectivity of influenza A and B viruses by proteolytic cleavage of the hemagglutinin polypeptide. Virology 68:440–454
    [Google Scholar]
  13. Lazarowitz S. G., Goldberg A. R., Choppin P. W. 1973; Proteolytic cleavage by plasmin of the HA polypeptide of influenza virus: host cell activation of serum plasminogen. Virology 56:172–180
    [Google Scholar]
  14. Madansky C. H., Bratt M. A. 1981; Relationships among virus spread, cytopathogenicity, and virulence as revealed by noncytopathic mutants of Newcastle disease virus. Journal of Virology 40:691–702
    [Google Scholar]
  15. Malis F., Slaby J., Slezak Z. 1979; Inhibitory action of Gordox on human trypsin and chymotrypsin activity compared to trasylol and antilysine. Therapia hungarica 27:87–91
    [Google Scholar]
  16. Merz D. C., Wolinsky J. S. 1981; Biochemical features of mumps virus neuraminidases and their relationship with pathogenicity. Virology 114:218–227
    [Google Scholar]
  17. Merz D. C., Server A. C., Waxham M. N., Wolinsky J. S. 1983; Biosynthesis of mumps virus F glycoprotein: non-fusing strains efficiently cleave the F glycoprotein precursor. Journal of General Virology 64:1457–1467
    [Google Scholar]
  18. Müller W. A., Taillens C., Lereret S. 1980; Resistance against subcutaneous insulin successfully managed with aprotinin. Lancet 1:1245–1246
    [Google Scholar]
  19. Muramatsu M., Homma M. 1980; Trypsin action on growth of Sendai virus in tissue cultured cells. V. An activating enzyme for Sendai virus in the chorioallantoic fluid of the embryonated chicken egg. Microbiology and Immunology 24:113–122
    [Google Scholar]
  20. Nagai Y., Klenk H.-D. 1977; Activation of precursor to both glycoproteins of NDV by proteolytic cleavage. Virology 77:125–134
    [Google Scholar]
  21. Nagai Y., Klenk H.-D., Rott R. 1976; Proteolytic cleavage of the viral glycoproteins and its significance for the virulence of Newcastle disease virus. Virology 72:494–508
    [Google Scholar]
  22. Nagai Y., Shimokata K., Yoshida T., Hamaguchi M., Iinuma M., Maeno K., Matsumoto T., Klenk H.-D., Rott R. 1979; The spread of a pathogenic and an apathogenic strain of Newcastle disease virus in the chick embryo as depending on the protease sensitivity of the virus glycoproteins. Journal of General Virology 45:263–272
    [Google Scholar]
  23. Nakajima S., Sugiura A. 1980; Neurovirulence of influenza virus in mice. II. Mechanism of virulence as studied in a neuroblastoma cell line. Virology 101:450–457
    [Google Scholar]
  24. Ohuchi M., Homma M. 1976; Trypsin action on the growth of Sendai virus in tissue culture cells. IV. Evidence for activation of Sendai virus by cleavage of a glycoprotein. Journal of Virology 18:1147–1150
    [Google Scholar]
  25. Rott R., Reinacher M., Orlich M., Klenk H.-D. 1980; Cleavability of hemagglutinin determines spread of avian influenza viruses in the chorion allantoic membrane of chicken embryo. Archives of Virology 65:123–135
    [Google Scholar]
  26. Scheid A., Choppin P. W. 1974; Identification of biological activities of paramyxovirus glycoproteins. Activation of cell fusion, hemolysis and infectivity by proteolytic cleavage of an inactive precursor protein of Sendai virus. Virology 57:475–490
    [Google Scholar]
  27. Scheid A., Choppin P. W. 1976; Protease activation mutants of Sendai virus. Activation of biological properties by specific proteases. Virology 69:265–277
    [Google Scholar]
  28. Scheid A., Choppin P. W. 1977; Two disulfide-linked polypeptide chains constitute the active F protein of paramyxoviruses. Virology 80:54–66
    [Google Scholar]
  29. Shibuta H., Kanda T., Hazama A., Matsumoto M. 1982; Experimental parainfluenza virus infection in mice: fatal illness with atrophy of thymus and spleen in mice by a variant of parainfluenza 3 virus. Infection and Immunity 35:437–441
    [Google Scholar]
  30. Shimokata K., Ito Y., Nishiyama Y., Kimura Y. 1980; Influence of trypsin on the infectivity and biological properties of parainfluenza type 2 (croup-associated) virus in Vero cells. Journal of General Virology 48:407–410
    [Google Scholar]
  31. Silver S. M., Scheid A., Choppin P. W. 1978; Loss on serial passage of rhesus monkey kidney cells of proteolytic activity required for Sendai virus activation. Infection and Immunity 20:235–241
    [Google Scholar]
  32. Skehel J. J., Waterfield M. D. 1975; Studies on the primary structure of the influenza virus hemagglutinin. Proceedings of the National Academy of Sciences, U.S.A 72:93–97
    [Google Scholar]
  33. Sugawara K., Ohuchi M., Nakamura K., Homma M. 1981; Effect of various proteases on the glycoprotein composition and the infectivity in influenza C virus. Archives of Virology 68:147–151
    [Google Scholar]
  34. Tashiro M., Homma M. 1983; Evidence of proteolytic activation of Sendai virus in mouse lung. Archives of Virology 77:127–138
    [Google Scholar]
  35. Trautschold J., Werle E., Zickgraf-Rüdel G. 1967; Trasylol. Biochemical Pharmacology 16:59–72
    [Google Scholar]
  36. Vallbracht A., Scholtissek C., Flehmig B., Gerth H.-J. 1980; Recombination of influenza A strains with fowl plague virus can change pneumotropism for mice to a generalized infection with involvement of the central nervous system. Virology 107:452–460
    [Google Scholar]
  37. Zhirnov O. P. 1983; Proteolytic activation of myxoviruses and a new strategy in the treatment of viral diseases. Voprosi Virusologii 4:9–21
    [Google Scholar]
  38. Zhirnov O. P., Bukrinskaya A. G. 1981; Two forms of influenza virus nucleoprotein in infected cells and virions. Virology 109:174–179
    [Google Scholar]
  39. Zhirnov O. P., Ovcharenko A. V., Bukrinskaya A. G. 1982a; A modified plaque assay method for accurate analysis of infectivity of influenza viruses with uncleaved haemagglutinin. Archives of Virology 71:177–183
    [Google Scholar]
  40. Zhirnov O. P., Ovcharenko A. V., Bukrinskaya A. G. 1982b; Protective effect of protease inhibitors in influenza virus infected animals. Archives of Virology 73:263–272
    [Google Scholar]
  41. Zhirnov O. P., Ovcharenko A. C., Bukrinskaya A. G. 1982c; Proteolytic activation of influenza WSN virus in cultured cells is performed by homologous plasma enzymes. Journal of General Virology 63:469–474
    [Google Scholar]
  42. Zhirnov O. P., Ovcharenko A. V., Bukrinskaya A. G. 1984a; Suppression of influenza virus replication in infected mice by protease inhibitors. Journal of General Virology 65:191–196
    [Google Scholar]
  43. Zhirnov O. P., Ovcharenko A. V., Bukrinskaya A. G., Ursaki L. P., Ivanova L. A., Ketiladze E. S., Stebaeva L. F. 1984b; Antiviral and therapeutic effect of protease inhibitors in viral infections: experimental and clinical observations. Voprosi Virusologii 4:491–496
    [Google Scholar]
/content/journal/jgv/10.1099/0022-1317-66-7-1633
Loading
/content/journal/jgv/10.1099/0022-1317-66-7-1633
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error