1887

Abstract

SUMMARY

We have determined the herpes simplex virus (HSV) type 2 DNA sequences responsible for the initiation of morphological transformation and have investigated the retention and expression of these sequences in morphologically transformed cells and in tumours derived from these cells. All the transformed cells analysed were selected by a focus formation assay and are oncogenic in the inbred host rat. Cloned dIII and II fragments from the HSV-2 genome were assayed for the ability to initiate morphological transformation of rat embryo cells. Only the dIII (map units 0.52 to 0.72) and the II (0.582 to 0.612) clones gave transformed foci. This shows that the II region is responsible for initiation of transformation. Southern blot analysis of DNA extracted from these transformed cells and from tumours derived from these transformed cells revealed that neither the II fragment nor fragments of 500 bp mapping within it are detected at the level of one copy per cell and therefore need not be retained in the cell to maintain the oncogenic phenotype. In addition there was no evidence of expression of the HSV-specified ribonucleotide reductase activity which is partially encoded within the II fragment of HSV-2. We also analysed DNA from rat embryo cells transformed by mutants of HSV-2 (HG52) or HSV-1 (HFEM or 17) at non-permissive temperature or by virus at supraoptimal temperature or by sheared virus DNA and DNA from tumours derived from lines of these transformed cells. In addition, we cloned both transformed and tumour cell lines and analysed these similarly. In no case could we detect HSV DNA sequences at the level of one copy per cell.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-66-3-517
1985-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/66/3/JV0660030517.html?itemId=/content/journal/jgv/10.1099/0022-1317-66-3-517&mimeType=html&fmt=ahah

References

  1. Adam E., Dreesman G. R., Burek J., Melnick J. L., Kaufman R. H., Powell K. L., Purifoy D. J. M. 1981; Herpes simplex virus type 2 non structural delayed early (B) proteins in squamous cell genital neoplasms and antibody prevalence to these antigens. In International Workshop on Herpesviruses p 119 Edited by Kaplan A. S., La Placa L., Rapp F., Roizman B. Bologna: Esculapio Publishing Co;
    [Google Scholar]
  2. Bastow K. F., Darby G., Wildy P., Minson A. C. 1980; Properties of cells carrying the herpes simplex virus type 2 thymidine kinase gene: mechanism of reversion to a thymidine kinase-negative phenotype. Journal of Virology 36:746–755
    [Google Scholar]
  3. Benoist C., Chambon P. 1981; In vivo sequence requirements of the SV40 early promoter region. Nature, London 290:304–310
    [Google Scholar]
  4. Boyd A., Orme T., Boone C. 1975; Transformation of mouse cells with herpes simplex virus type 2. Second International Symposium on Oncogenesis and Herpesviruses 1:429–439
    [Google Scholar]
  5. Boyd A. L., Enquist L., Vande Woude G. F., Hampar B. 1980; Activation of mouse retrovirus by herpes simplex virus type 1 DNA fragments. Virology 103:228–231
    [Google Scholar]
  6. Büültjens T. E. G., Macnab J. C. M. 1981; Characterization of rat embryo cells transformed by ts mutants and sheared DNA of herpes simplex virus types 1 and 2 and a derived tumour cell line. Cancer Research 41:2540–2547
    [Google Scholar]
  7. Camacho A., Spear P. 1978; Transformation of hamster embryo fibroblasts by a specific fragment of the herpes simplex virus genome. Cell 15:993–1002
    [Google Scholar]
  8. Cameron L. R. 1982 Cell transformation studies using fragments of herpes simplex virus type 2 DNA Ph. D. thesis University of Glasgow;
    [Google Scholar]
  9. Cameron I. R., Macnab J. C. M. 1980; Transformation studies using defined fragments of herpes simplex virus type 2. In The Human Herpesviruses p 634 Edited by Nahmias A. J., Dowdle W. R., Schinazi R. F. New York: Elsevier/North-Holland;
    [Google Scholar]
  10. Cameron I. R., Wilkie N. M., Macnab J. C. M. 1983; The infectivity of herpes simplex virus DNA in rat embryo cells is enhanced synergistically by DMSO and glucose. Journal of Virological Methods 6:183–191
    [Google Scholar]
  11. Croce C. M. 1984; Translocation of an immunoglobulin K locus to a region 3′ of an unrearranged C-myc oncogene enhances C-myc transcription. Journal of Cellular Biochemistry, Supplement 8A:38
    [Google Scholar]
  12. Darai G., Munk K. 1973; Human embryonic lung cells abortively infected with herpesvirus hominus type 2 show some properties of cell transformation. Nature New Biology 241:268
    [Google Scholar]
  13. Darai G., Munk K. 1976; Neoplastic transformation of rat embryo cells with herpes simplex virus. International Journal of Cancer 28:469–481
    [Google Scholar]
  14. Davison A. J., Wilkie N. M. 1983; Location and orientation of homologous sequences in the genomes of five herpesviruses. Journal of General Virology 64:1927–1942
    [Google Scholar]
  15. Duff R., Rapp F. 1971; Oncogenic transformation of hamster cells after exposure to herpes simplex virus type 2. Nature New Biology 233:48–50
    [Google Scholar]
  16. Duff R., Rapp F. 1973; Oncogenic transformation of hamster embryo cells after exposure to inactivated herpes simplex virus type 1. Journal of Virology 12:209–214
    [Google Scholar]
  17. Dutia B. M. 1983; Ribonucleotide reductase induced by herpes simplex virus has a virus-specified constituent. Journal of General Virology 64:513–521
    [Google Scholar]
  18. Everett R. D. 1983; DNA sequence elements required for regulated expression of the HSV-1 glycoprotein D promoter lie within 83 bp of the RNA cap sites. Nucleic Acids Research 11:6647–6666
    [Google Scholar]
  19. Galloway D. A., McDougall J. K. 1981; Transformation of rodent cells by a cloned DNA fragment of herpes simplex virus type 2. Journal of Virology 38:749–760
    [Google Scholar]
  20. Galloway D. A., McDougall J. K. 1983; The oncogenic potential of herpes simplex viruses: evidence for a ‘hit and run’ mechanism. Nature, London 302:21–24
    [Google Scholar]
  21. Galloway D. A., Goldstein L. C., Lewis J. B. 1982; Identification of proteins encoded by a fragment of herpes simplex virus type 2 DNA that has transforming activity. Journal of Virology 42:530–537
    [Google Scholar]
  22. Graham F. L., Veldhuisen G., Wilkie N. M. 1973; Infectious herpesvirus DNA. Nature, London 245:265–266
    [Google Scholar]
  23. Hayward W. S., Neel B. G., Astrim S. M. 1981; Activation of a cellular oncogene by promoter insertion in ALV-induced lymphoid leukosis. Nature, London 290:475–480
    [Google Scholar]
  24. Huszar D., Bacchetti S. 1983; Is ribonucleotide reductase the transforming function of herpes simplex virus type 2?. Nature, London 302:76–79
    [Google Scholar]
  25. Jariwalla R. J., Aurelian L., Ts’O P. O. P. 1980; Tumourigenic transformation induced by a specific fragment of DNA from herpes simplex virus type 2. Proceedings of the National Academy of Sciences, U.S.A 77:2279–2283
    [Google Scholar]
  26. Jariwalla R. J., Aurelian L., Ts’O P. O. P. 1983; Immortalization and neoplastic transformation of normal diploid cells by defined cloned DNA fragments of herpes simplex virus type 2. Proceedings of the National Academy of Sciences, U.S.A 80:5902–5906
    [Google Scholar]
  27. McKnight S. L., Kingsbury R. 1982; Transcriptional control signals of a eukaryotic protein coding gene. Science 217:316–324
    [Google Scholar]
  28. McLauchlan J., Clements J. B. 1983; DNA sequence homology between two co-linear loci on the HSV genome which have different transforming abilities. EMBO Journal 2:1953–1961
    [Google Scholar]
  29. Macnab J. C. M. 1972; Transformation of sheep cells by simian virus 40. Archiv fur die gesamte Virusforschung 37:71–77
    [Google Scholar]
  30. Macnab J. C. M. 1974; Transformation of rat embryo cells by temperature sensitive mutants of herpes simplex virus. Journal of General Virology 24:143–153
    [Google Scholar]
  31. Macnab J. C. M. 1975; Transformed cell lines produced by temperature-sensitive mutants of herpes simplex types 1 and 2. In Oncogenesis and Herpesviruses II: pp 227–236 Edited by de The G., Epstein M. A., zur Hausen H. Lyon: IARC Scientific Publications No. 11;
    [Google Scholar]
  32. Macnab J. C. M. 1979; Tumour production by HSV-2 transformed lines in rats and the varying response to immunosuppression. Journal of General Virology 43:39–56
    [Google Scholar]
  33. Macnab J. C. M., McDougall J. K. 1980; Transformation by herpesviruses. In The Human Herpesviruses p 634 Edited by Nahmias A. J. Dowdle W. R., F R. Schinazi, New York: Elsevier/North-Holland;
    [Google Scholar]
  34. Macnab J. C. M., Visser L., Jamieson A. T., Hay J. 1980; Specific viral antigens in rat cells transformed by herpes simplex virus type 2 and in rat tumours induced by inoculation of transformed cells. Cancer Research 40:2074–2097
    [Google Scholar]
  35. Macnab J. C. M., Park M., Cameron I. R., Kitchener H. C., Walkinshaw S. A., McLauchlan J., Davision M.-J., Cordiner J. W., Clements J. B., Subak-Sharpe J. H. 1985; Possibilities and consequences of virus detection in patients with CIN and cancer. Cancer Campaign 8 Stuttgart & New York: Gustav Fischer-Verlag;
    [Google Scholar]
  36. Minson A. C., Thouless M. E., Elgin R. P., Darby G. 1976; The detection of virus DNA sequences in HSV-2 transformed hamster cell line (3338–3339). International Journal of Cancer 17:473–480
    [Google Scholar]
  37. Park M. 1983 Studies on herpes simplex virus information in transformed rat cell lines and human cervical carcinoma cells Ph.D. thesis University of Glasgow;
    [Google Scholar]
  38. Park M., Macnab J. C. M. 1983; Induction of a latent herpes simplex virus from a rat tumour initiated by herpes simplex virus-transformed cells. Journal of General Virology 64:755–758
    [Google Scholar]
  39. Park M., Lonsdale D. M., Timbury M. C., Subak-Sharpe J. H., Macnab J. C. M. 1980; Genetic retrieval of viral genome sequences from herpes simplex virus transformed cells. Nature, London 285:412–415
    [Google Scholar]
  40. Park M., Kitchener H. K., Macnab J. C. M. 1983; Detection of herpes simplex virus type-2 DNA restriction fragments in human cervical carcinoma tissue. EMBO Journal 2:1029–1034
    [Google Scholar]
  41. Peden K., Mounts P., Hayward G. 1982; Homology between mammalian cell DNA sequences and human herpesvirus genomes detected by a hybridization procedure with a high complexity probe. Cell 31:71–80
    [Google Scholar]
  42. Preston V. G., Palfreyman J. W., Dutia B. M. 1984; Identification of a herpes simplex virus type 1 polypeptide which is a component of the virus induced ribonucleotide reductase. Journal of General Virology 65:1457–1466
    [Google Scholar]
  43. Puga A., Canten E., Notkins A. L. 1982; Homology between murine and human cellular DNA sequences and the terminal replication of the S component of herpes simplex virus type 1 DNA. Cell 31:81–87
    [Google Scholar]
  44. Rasheed S., Burszewski J., Rongey R. W., Roy-Burman P., Charman H. P., Gardner M. B. 1976; Spontaneous release of endogenous ecotropic type C virus from rat embryo cultures. Journal of Virologv 18:799–803
    [Google Scholar]
  45. Reyes G. R., Lafemina R., Hayward S. D., Hayward G. S. 1979; Morphological transformation by DNA fragments of human herpesviruses: evidence for two distinct transforming regions in HSV-1 and HSV-2 and the lack of correlation with biochemical transfer of the thymidine kinase gene. Cold Spring Harbor Symposia on Quantitative Biology 44:629–641
    [Google Scholar]
  46. Rigby P. W. J., Dieckmann M., Rhodes C., Berg P. 1977; Labelling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. Journal of Molecular Biology 113:237–251
    [Google Scholar]
  47. Southern E. M. 1975; Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98:503–517
    [Google Scholar]
  48. Stoker M., Abel P. 1962; Conditions affecting transformation by polyoma virus. Cold Spring Harbor Symposia on Quantitative Biology 27:375–386
    [Google Scholar]
  49. Stow N. D., Wilkie N. M. 1978; Physical mapping of temperature-sensitive mutations of herpes simplex virus type 1 by intertypic marker rescue. Virology 90:1–11
    [Google Scholar]
  50. Varmus H. E., Bishop J. M. 1973; Appearance of virus-specific DNA in mammalian cells following transformation by Rous sarcoma virus. Journal of Molecular Biology 74:613–626
    [Google Scholar]
  51. Wilkie N. M. 1973; The synthesis and substructure of herpesvirus DNA: the distribution of alkali-labile single strand interruptions in HSV-1 DNA. Journal of General Virology 21:453–467
    [Google Scholar]
  52. Wilkie N. M., Clements J. B., Macnab J. C. M., Subak-Sharpe J. H. 1974; The structure and biological properties of herpes simplex virus DNA. Cold Spring Harbor Symposia on Quantitative Biology 39:657–666
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-66-3-517
Loading
/content/journal/jgv/10.1099/0022-1317-66-3-517
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error