Further Studies on the Role of Neuraminidase and the Mechanism of Low pH Dependence in Influenza Virus-induced Membrane Fusion Free

Abstract

SUMMARY

The role of neuraminidase and the mechanism of low pH dependence in influenza virus-induced membrane fusion have been studied further using fowl plague virus (FPV, H7N1). Two specific anti-FPV neuraminidase antisera obtained from chickens immunized with recombinant virus strains inhibited viral neuraminidase activity without influencing its haemagglutinating activity. These sera totally inhibited the FPV-induced fusion of erythrocytes and partially reduced haemolysis. But both fusion and haemolysis activities could be restored by external addition of neuraminidase, indicating participation of neuraminidase in FPV-induced membrane fusion. With regard to low pH-dependent fusion by influenza virus, it was found that erythrocytes of various species showed different pH optima for haemolysis by FPV and that erythrocytes could be sensitized for fusion and haemolysis by FPV at neutral pH if they had been pretreated with a low pH buffer. These results demonstrated that surface properties of erythrocytes rather than that of the virus are critical in the low pH-dependent fusion and haemolysis by influenza viruses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-66-2-295
1985-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/66/2/JV0660020295.html?itemId=/content/journal/jgv/10.1099/0022-1317-66-2-295&mimeType=html&fmt=ahah

References

  1. Chuchulowius H.-W., Rott R. 1972; A new method for purification of myxoviruses by zonal centrifugation with two different sucrose density gradients. Proceedings of the Society for Experimental Biology and Medicine 140:245–247
    [Google Scholar]
  2. Daniels R. S., Douglas A. R., Skehel S. I., Wiley D. C. 1983; Analysis of antigenicity of influenza haemagglutinin at the pH optimum for virus-mediated membrane fusion. Journal of General Virology 64:1657–1662
    [Google Scholar]
  3. Dimmock N. J. 1982; Initial stages in infection with animal viruses. Journal of General Virology 59:1–22
    [Google Scholar]
  4. Helenius A., Kartenbeck J., Simons K., Fries E. 1980; On the entry of Semliki Forest virus into BHK 21 cells. Journal of Cell Science 84:404–420
    [Google Scholar]
  5. Huang R. T. C. 1982; Dansylsphingolipids for labelling and probing membranes. FEBS Letters 145:103–108
    [Google Scholar]
  6. Huang R. T. C. 1983; Involvement of glycolipids in myxovirus-induced membrane fusion (haemolysis). Journal of General Virology 64:221–224
    [Google Scholar]
  7. Huang R. T. C., Orlich M. 1971; Substrate specificities of the neuraminidases of Newcastle disease and fowl plague viruses. Hoppe-Seyler’s Zeitschrift für Physiologische Chemie 353:318–322
    [Google Scholar]
  8. Huang R. T. C., Wahn K., Klenk H.-D., Rott R. 1980a; Fusion of liposomes containing the glycoproteins of influenza virus with tissue culture cells. Virology 104:294–302
    [Google Scholar]
  9. Huang R. T. C., Rott R., Wahn K., Klenk H.-D., Kohama T. 1980b; Function of neuraminidase in membrane fusion induced by myxoviruses. Virology 107:313–319
    [Google Scholar]
  10. Huang R. T. C., Rott R., Klenk H.-D. 1981a; Influenza viruses cause hemolysis and fusion of cells. Virology 110:243–247
    [Google Scholar]
  11. Huang R. T. C., Wahn K., Schmidt M. F. G., Rott R. 1981b; Productive infection of chick embryo cells by influenza viruses tightly bound on substratum. Medical Microbiology and Immunology 170:91–98
    [Google Scholar]
  12. Lenard J., Miller D. K. 1981; pH-dependent hemolysis by influenza, Semliki Forest and Sendai viruses. Virology 110:479–482
    [Google Scholar]
  13. Lenard J., Bailey C. A., Miller D. K. 1982; pH-dependence of influenza A virus-mediated haemolysis is determined by the haemagglutinin gene. Journal of General Virology 62:353–355
    [Google Scholar]
  14. Maeda J., Kawasaki J., Ohnishi S. 1981; Interaction of influenza virus hemagglutinin with target membrane lipids is a key step in virus-induced hemolysis and fusion at pH 5.2. Proceedings of the National Academy of Sciences, U. S. A 78:4133–4137
    [Google Scholar]
  15. Rott R. 1965; Untersuchung über die Feinstruktur des infektiösen Partikels der Newcastle Disease und über die neben ihm auftretenden, nicht infektiösen virusspezifischen Einheiten. Zentralblatt für Veterinärmedizin B12:74–116
    [Google Scholar]
  16. Rott R., Orlich M., Scholtissek C. 1979; Correlation of pathogenicity and gene constellation of influenza A viruses. III. Nonpathogenic recombinants derived from highly pathogenic parent strains. Journal of General Virology 44:471–477
    [Google Scholar]
  17. Schauer R. 1983; Glycosidases with special reference to the pathophysiological role of sialidases. In Structural Carbohyrates in the Liver pp 83–98 Edited by Popper H., Reutter W., Köttgen E., Gudat F. Boston: MTP Press;
    [Google Scholar]
  18. Seto J. T., Rott R. 1966; Functional significance of sialidase during influenza virus multiplication. Virology 30:731–737
    [Google Scholar]
  19. Shibata M., Maeno K., Tsurumi T., Aoki H., Nishiyama Y., Ito Y., Isomura S., Suzuki S. 1982; Role of viral glycoproteins in haemolysis by influenza B viruses. Journal of General Virology 59:183–186
    [Google Scholar]
  20. Skehel J. J., Bayley P. M., Brown E. B., Martin S. R., Waterfield M. D., White J. M., Wilson I. A., Wiley D. C. 1982; Changes in the conformation of influenza virus hemagglutinin at the pH optimum of virus-mediated membrane fusion. Proceedings of the National Academy of Sciences, U. S. A 79:968–972
    [Google Scholar]
  21. White J., Matlin K., Helenius A. 1981; Cell fusion by SFV, influenza and VS viruses. Journal of Cell Biology 89:674–679
    [Google Scholar]
  22. White J., Helenius A., Gething M. I. 1982; Haemagglutinin of influenza virus expressed from a cloned gene promotes membrane fusion. Nature, London 300:658–659
    [Google Scholar]
  23. Wilson I. A., Skehel J. J., Wiley D. C. 1981; Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 Å resolution. Nature, London 289:366–373
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-66-2-295
Loading
/content/journal/jgv/10.1099/0022-1317-66-2-295
Loading

Data & Media loading...

Most cited Most Cited RSS feed