1887

Abstract

SUMMARY

Ultrastructural studies of the uptake of enveloped and naked frog virus 3 (FV 3) particles by BHK-21 cells have shown that enveloped viruses are internalized by adsorptive endocytosis via coated pits. The enveloped particles then appear to move through endosomes and finally lysosomes. Naked viruses may also follow the same pathway but only rarely. Their more frequent mode of entry is by fusion between the virus shell and the cellular membranes, thus allowing the virus to shed its nucleoprotein content directly into the cytoplasm. This difference in the mechanism of penetration has been confirmed by the use of lysosomotropic agents: the inhibition of viral growth being far more drastic for enveloped FV 3 than for naked virus implies that a lysosomal step is required for the multiplication of enveloped viral particles.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-66-2-283
1985-02-01
2021-10-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/66/2/JV0660020283.html?itemId=/content/journal/jgv/10.1099/0022-1317-66-2-283&mimeType=html&fmt=ahah

References

  1. Bingen-Brendel A., Tripier F., Kirn A. 1971; Etude morphologique séquentielle du développement du FV 3 sur cellules BHK 21. Journal de Microscopie 11:249–258
    [Google Scholar]
  2. Braunwald I., Tripier F., Kirn A. 1979; Comparison of the properties of enveloped and naked frog virus 3 (FV3) particles. Journal of General Virology 45:673–682
    [Google Scholar]
  3. Braunwald J., Nonnemacher H., Tripier-Darcy F. 1984; Frog virus 3 envelope: protective role and incidence on the early steps of infection. Annales de Virologie 135F:233–243
    [Google Scholar]
  4. Bukrinskaya A. G. 1982; Penetration of viral genetic material into host cell. Advances in Virus Research 27:141–204
    [Google Scholar]
  5. Chang A., Metz D. H. 1976; Further investigations on the mode of entry of vaccinia virus into cells. Journal of General Virology 32:275–282
    [Google Scholar]
  6. Cuillel M., Tripier F., Braunwald J., Jacrot B. 1979; A low resolution structure of frog virus 3. Virology 99:277–285
    [Google Scholar]
  7. Dales S. 1973; Early events in cell-animal virus interactions. Bacteriological Reviews 37:103–135
    [Google Scholar]
  8. Dales S. 1978; Penetration of animal viruses into cells. In Transport of Macromolecules in Cellular Systems vol 11: pp 47–68 Edited by Silverstein S. C. Dahlem Konferenzen, Abakon, Berlin: Life Science Research Report;
    [Google Scholar]
  9. De Duve C., De Barsy T., Poole B., Trouet A., Tulkens P., van Hoof F. 1974; Lysosomotropic agents. Biochemical Pharmacology 23:2495–2531
    [Google Scholar]
  10. Dimmock N. I. 1982; Initial stages in infection with animal viruses. Journal of General Virology 59:1–22
    [Google Scholar]
  11. Fenner F., Gibbs A. 1983; Cryptograms-1982. Intervirology 19:121–128
    [Google Scholar]
  12. Gendrault J. L., Steffan A. M., Bingen A., Kirn A. 1980; Uptake of frog virus 3 by KupfTer cells in vivo and in vitro. In The Reticuloendothelial System and The Pathogenesis of Liver Disease pp 221–228 Edited by Liehr H., Grün M. Amsterdam: Elsevier/North-Holland;
    [Google Scholar]
  13. Gendrault J. L., Steffan A. M., Bingen A., Kirn A. 1981; Penetration and uncoating of frog virus 3 (FV 3) in cultured rat KupfTer cells. Virology 112:375–384
    [Google Scholar]
  14. Goldstein J. L., Anderson R. G. W., Brown M. S. 1979; Coated pits, coated vesicles and receptor-mediated endocytosis. Nature, London 279:679–685
    [Google Scholar]
  15. Goorha R., Granoff A. 1979; Icosahedral cytoplasmic deoxyriboviruses. In Comprehensive Virology vol 14: pp 347–399 Edited by Fraenkel-Conrat H., Wagner R. R. New York & London: Plenum Press;
    [Google Scholar]
  16. Helenius A., Kartenbeck J., Simons K., Fries E. 1980; On the entry of Semliki Forest virus into BHK 21 cells. Journal of Cell Biology 84:404–420
    [Google Scholar]
  17. Helenius A., Marsh M., White J. 1982; Inhibition of Semliki Forest virus penetration by lysosomotropic weak bases. Journal of General Virology 58:47–61
    [Google Scholar]
  18. Houts G. E., Gravell M., Granoff A. 1974; Electron microscopic observations on early events of frog virus 3 replication. Virology 58:589–594
    [Google Scholar]
  19. Kawamoto K., Hirano A., Herz F. 1980; Simplified in situ preparation of cultured cell monolayers for electron microscopy. Journal of Histochemistry and Cytochemistry 28:178–180
    [Google Scholar]
  20. Kohn A. 1979; Early interactions of viruses with cellular membranes. Advances in Virus Research 24:223–276
    [Google Scholar]
  21. Lenard J., Miller D. K. 1982; Uncoating of enveloped viruses. Cell 28:5–6
    [Google Scholar]
  22. Lonberg-Holm K., Philipson L. 1974; Early interactions between animal viruses and cells. Monographs in Virology 9:1–149
    [Google Scholar]
  23. Lonberg-Holm K., Philipson L. 1980; Molecular aspects of virus receptors and cell surfaces. In Cell Membranes and Viral Envelopes vol 2: pp 789–848 Edited by Blough H. A., Tiffany J. M. London: Academic Press;
    [Google Scholar]
  24. Marsh M. 1984; The entry of enveloped viruses into cells by endocytosis. Biochemical Journal 218:1–10
    [Google Scholar]
  25. Marsh M., Helenius A. 1980; Adsorptive endocytosis of Semliki Forest virus. Journal of Molecular Biology 142:439–454
    [Google Scholar]
  26. Mathieson W. B., Lee P. E. 1981; Cytology and autoradiography of Tipula iridescent virus infection of insect suspension cell cultures. Journal of Ultrastructure Research 74:59–68
    [Google Scholar]
  27. Possee R. D., Dimmock N. J. 1981; Neutralization of influenza virus by antibody: attachment, uptake and uncoating of neutralized virus in chick embryo cells. In Genetic Variation Among Influenza Viruses pp 473–480 Edited by Nayak D. P., Fox C. F. New York: Academic Press;
    [Google Scholar]
  28. Robach Y., Michels B., Cerf R., Braunwald J., Tripier-Darcy F. 1983; Ultrasonic absorption evidence for structural fluctuations in frog virus 3 and its subparticles. Proceedings of the National Academy of Sciences, U. S. A 80:3981–3985
    [Google Scholar]
  29. Silverstein S. C., Dales S. 1968; The penetration of reovirus RNA and initiation of its genetic function in L-strain fibroblasts. Journal of Cell Biology 36:197–230
    [Google Scholar]
  30. Steffan A. M., Kirn A. 1982; Infection de cellules endotheliales de foie humain et murin en culture avec le virus vaccinal et le frog virus 3. Annales de Virologie 133E:439–453
    [Google Scholar]
  31. Stephenson J. R., Dimmock N. J. 1975; Early events in influenza virus multiplication. I. Location and fate of the input RNA. Virology 66:77–86
    [Google Scholar]
  32. Stoltz D. B. 1973; The structure of icosahedral cytoplasmic deoxyriboviruses. II. An alternative model. Journal of Ultrastructure Research 43:58–74
    [Google Scholar]
  33. Takahashi G. 1980; Simultaneous fixation with glutaraldehyde-picric acid-osmium tetroxide mixture for electron microscopy. In Electron Microscopy, 1980 vol 2: pp 746–747 Edited by Brederoo P., De Priester W. Leiden: Seventh European Congress on Electron Microscopy Foundation;
    [Google Scholar]
  34. Talbot P. J., Vance D. E. 1982; Biochemical studies on the entry of Sindbis virus into BHK 21 cells and the effect of NH4C1. Virology 118:451–455
    [Google Scholar]
  35. White J., Kartenbeck J., Helenius A. 1980; Fusion of Semliki Forest virus with the plasma membrane can be induced by low pH. Journal of Cell Biology 87:264–272
    [Google Scholar]
  36. White J., Matlin K., Helenius A. 1981; Cell fusion by Semliki Forest, influenza and vesicular stomatitis viruses. Journal of Cell Biology 89:674–679
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-66-2-283
Loading
/content/journal/jgv/10.1099/0022-1317-66-2-283
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error