1887

Abstract

SUMMARY

The acylation of the haemagglutinin (HA) of different influenza viruses and of the envelope glycoproteins of Semliki Forest virus (SFV) were analysed. The fatty acid linkage in these acylproteins was found to be resistant to a variety of organic solvents and combinations of these, even after pretreatment with various detergents. Fatty acids are released from influenza virus HA at a pH value between 11.8 and 12.1 at room temperature. Although this mild alkaline cleavage occurs rapidly, the release of fatty acids by treatment with hydroxylamine is time-, temperature- and concentration-dependent. By comparison with model esters the linkage in HA is suggested to be of the oxygenester type rather than a thioester linkage. To assay for possible functions of protein-bound fatty acids the biological activities of influenza virus (A/FPV/Rostock/34) and its solubilized spike glycoproteins were measured after deacylation. While viral haemagglutination activity was not hampered at all, its ability to haemolyse erythrocytes and infectivity were drastically reduced. Likewise, viral spike glycoproteins solubilized with detergents failed to induce haemolysis at low pH when fatty acids had been cleaved off. These results indicate the possible involvement of protein-bound fatty acids in fusion inducation through the acylated fusogenic spike glycoproteins.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-66-12-2635
1985-12-01
2022-01-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/66/12/JV0660122635.html?itemId=/content/journal/jgv/10.1099/0022-1317-66-12-2635&mimeType=html&fmt=ahah

References

  1. Aitken A., Cohen P., Santikarn S., Williams D. H., Calder A. G., Smith A., Klee C. B. 1982; Identification of the NH2-terminal blocking group of calcineurin B as myristic acid. FEBS Letters 150:7–12
    [Google Scholar]
  2. Baron C., Thompson T. E. 1975; Solubilization of bacterial membrane proteins using alkylglucosides and dioctanoyl phosphatidylcholine. Biochimica et biophysica acta 382:276–285
    [Google Scholar]
  3. Berger M., Schmidt M. F. G. 1985; Protein fatty acyltransferase is located in the rough endoplasmic reticulum. FEBS Letters 187:289–294
    [Google Scholar]
  4. Bolanowski M. A., Earles B. J., Lennarz W. I. 1984; Fatty acylation of proteins during development of sea urchin embryos. Journal of Biological Chemistry 259:4934–4940
    [Google Scholar]
  5. Bonner W. M., Laskey R. A. 1974; A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. European Journal of Biochemistry 46:83–88
    [Google Scholar]
  6. Carr S. A., Biemann K., Shoji S., Parmelee D. C., Titani K. 1982; A-tctradecanoyl is the NH2-terminal blocking group of the catalytic subunit of cyclic AMP-dependent protein kinase from bovine cardiac muscle. Proceedings of the National Academy of Sciences, U. S. A 79:6128–6131
    [Google Scholar]
  7. Deselnicu M., Lange P. M., Heidemann E. 1973; Studies on the cleavage of the a2 chain of collagen with hydroxylamine. Hoppe-Seyler’s Zeitschrift für physiologische Chemie 354:105–116
    [Google Scholar]
  8. Fergusson M. A. J., Cross G. A. M. 1984; Myristilation of the membrane form of a Trypanosoma brucei variant surface glycoprotein. Journal of Biological Chemistry 259:3011–3015
    [Google Scholar]
  9. Folch J., Lees M., Stanley G. H. 1957; A simple method for the isolation and purification of total lipids from animal cells. Journal of Biological Chemistry 226:497–509
    [Google Scholar]
  10. Franklin R. M., Wecker E. 1959; Inactivation of some animal viruses by hydroxylamine and the structure of ribonucleic acid. Nature, London 184:343–345
    [Google Scholar]
  11. Freese E., Bautz E., Bautz-Freese E. 1961; The chemical and mutagenic specificity of hydroxylamine. Proceedings of the National Academy of Sciences, U. S. A 47:845–855
    [Google Scholar]
  12. Gallick G. E., Arlinghaus R. B. 1984; Incorporation of lipids into variants of Moloney sarcoma virus which produce gag-mos fusion proteins. Virology 133:228–232
    [Google Scholar]
  13. Garoff H., Frischauf M.-M., Simons K., Lehrach H., Delius H. 1980; Nucleotide sequence of cDNA coding for Semliki Forest virus membrane glycoproteins. Nature, London 288:236–241
    [Google Scholar]
  14. Gething M.-J., Bye J., Skehel J., Waterfield M. 1980; Cloning and DNA sequence of double-stranded copies of haemagglutinin genes from H2 and H3 strains elucidates antigenic shift and drift in human influenza virus. Nature, London 287:301–306
    [Google Scholar]
  15. Henning R., Lange-Mutschler J. 1983; SV40 large T-antigen may be anchored in the plasma membrane by tightly associated lipids. Nature, London 305:736–738
    [Google Scholar]
  16. HIti A. L., Davis A. R., Nayak D. P. 1981; Complete sequence analysis shows that the haemagglutinins of the HI and H2 subtypes of human influenza virus are closely related. Virology 111:113–124
    [Google Scholar]
  17. Huang R. T. C., Rott R., Wahn K., Klenk H. D., Kohama T. 1980; The function of the neuraminidase in membrane fusion induced by myxoviruses. Virology 107:313–319
    [Google Scholar]
  18. Huang R. T. C., Rott R., Klenk H.-D. 1981; Influenza viruses cause hemolysis and fusion of cells. Virology 110:243–247
    [Google Scholar]
  19. Kaufman I. F., Krangel M. S., Strominger J. L. 1984; Cysteines in the transmembrane-regions of major histocompatibility complex antigens are fatty acylated via thioester bonds. Journal of Biological Chemistry 259:1–9
    [Google Scholar]
  20. Keenan W. T., Heid H. W., Stadler J., Jarasch E. D., Franke W. W. 1982; Tight attachment of fatty acids to proteins associated with milk lipid globule membrane. European Journal of Cell Biology 26:270–276
    [Google Scholar]
  21. Klockmann U., Deppert W. 1983; Acylation: a new post-translational modification specific for plasma membrane-associated simian virus 40 large T-antigen. FEBS Letters 151:257–259
    [Google Scholar]
  22. Koch N., Hämmerling G. J. 1985; The la associated invariant chain is fatty acylated before addition of sialic acid. Biochemistry (in press)
    [Google Scholar]
  23. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 227:680–685
    [Google Scholar]
  24. Magee A. I., Koyama A. H., Malfer C., Wen D., Schlesinger M. J. 1984; Release of fatty acids from virus glycoproteins by hydroxylamine. Biochimica et hiophysica acta 798:156–166
    [Google Scholar]
  25. Marinetti G. V., Siani M. 1984; Synthesis of dinitrophenyl derivatives of 3-O-fatty acyl esters of serine and threonine. Chemistry and Physics of Lipids 34:207–215
    [Google Scholar]
  26. Newlin G. E., Bussell R. H. 1975; Characterization of inactivation of myxoviruses and paramyxoviruses by hydroxylamine, N-methylhydroxylamine and O-methylhydroxylamine. Archives of Virology 47:97–107
    [Google Scholar]
  27. O’brien P. J., Zatz M. 1984; Acylation of bovine rhodopsin by [3H]palmitic acid. Journal of Biological Chemistry 259:5054–5057
    [Google Scholar]
  28. Olson E. N., Glaser L., Merlie J. P. 1984; α and β-and-subunits of the nicotinic acetylcholine receptor contain covalently bound lipid. Journal of Biological Chemistry 259:5364–5367
    [Google Scholar]
  29. Omary M. B., Trowbridge J. S. 1981a; Biosynthesis of the human transferrin receptor in cultured cells. Journal of Biological Chemistry 256:12888–12892
    [Google Scholar]
  30. Omary M. B., Trowbridge J. S. 1981b; Covalent binding of fatty acid to the transferrin receptor in cultured cells. Journal of Biological Chemistry 256:4715–4718
    [Google Scholar]
  31. Paterson R. G., Harris T. J. R., Lamb R. A. 1984; Fusion protein of the paramyxovirus simian virus 5: nucleotide sequence of mRNA predicts a highly hydrophobic glycoprotein. Proceedings of the National Academy of Sciences, U.S.A 81:6706–6710
    [Google Scholar]
  32. Petri W. A. Jr, Wagner R. R. 1980; Glycoprotein micelles isolated from vesicular stomatitis virus spontaneously partition into sonicated phosphatidylcholine vesicles. Virology 107:543–547
    [Google Scholar]
  33. Porter A. G., Barber C., Carey N. H., Hallewell R. A., Threlfall G., Emtage J. S. 1979; Complete nucleotide sequence of an influenza virus haemagglutinin gene from cloned DNA. Nature, London 282:471–477
    [Google Scholar]
  34. Rice C. M., Bell J. R., Hunkapiller M. S., Strauss E. G., Strauss J. H. 1981; Isolation and characterization of the hydrophobic COOH-terminal domains of the Sindbis virion glycoproteins. Journal of Molecular Biology 154:355–378
    [Google Scholar]
  35. Rose J. K., Adams G. A., Gallione C. J. 1984; The presence of cysteine in the cytoplasmic domain of the vesicular stomatitis virus glycoprotein is required for palmitate addition. Proceedings of the National Academy of Sciences, U. S. A 81:2050–2054
    [Google Scholar]
  36. Sato S. B., KawasakI K., Onishi S. 1983; Hemolytic activity of influenza virus haemagglutinin glycoproteins activated in mildly acidic environments. Proceedings of the National Academy of Sciences, U. S. A 80:3153–3157
    [Google Scholar]
  37. Schäfer W., Rott R. 1962; Herstellung von Virusvaccinen mit Hydroxylamin. Verlauf der Inaktivierung und Wirkung des Hydroxylamins auf verschiedene biologische Eigenschaften einiger Viren. Zeitschrift für Hygiene und Infektionskrankheiten 148:256–268
    [Google Scholar]
  38. Schlesinger M. J., Magee A. I., Schmidt M. F. G. 1980; Fatty acid acylation of proteins in cultured cells. Journal of Biological Chemistry 255:10021–10024
    [Google Scholar]
  39. Schlesinger M. J., Magee A. I., Schmidt M. F. G. 1981; Fatty acid acylation of VSV glycoprotein. In The Replication of Negative Strand Viruses pp 673–678 Edited by Bishop D. H. L., Compans R. W. New York & Amsterdam: Elsevier/North-Holland;
    [Google Scholar]
  40. Schmidt M. F. G. 1982a; Acylation of proteins-a new type of modification of membrane glycoproteins. Trends in Biochemical Sciences 7:322–324
    [Google Scholar]
  41. Schmidt M. F. G. 1982b; Acylation of viral spike glycoproteins a feature of enveloped RNA viruses. Virology 116:327–338
    [Google Scholar]
  42. Schmidt M. F. G. 1983; Fatty acid binding: a new kind of posttranslational modification of membrane proteins. Current Topics in Microbiology and Immunology 102:101–129
    [Google Scholar]
  43. Schmidt M. F. G. 1984; The transfer of myristic and other fatty acids on lipid and viral protein acceptors in cultured cells infected with Semliki Forest and influenza virus. EMBO Journal 3:2295–2300
    [Google Scholar]
  44. Schmidt M. F. G., Bracha M., Schlesinger M. J. 1979; Evidence of covalent attachment of fatty acids to Sindbis virus glycoproteins. Proceedings of the National Academy of Sciences, U.S.A 76:1678–1691
    [Google Scholar]
  45. Scholtissek C., Rott R. 1963; Synthesis of viral ribonucleic acid by a chemically inactivated influenza virus. Nature, London 199:200–201
    [Google Scholar]
  46. Schultz A. M., Oroszlan S. 1984; Myristilation of gag-onc fusion proteins in mammalian transforming retroviruses. Virology 133:431–437
    [Google Scholar]
  47. Schultz A. M., Henderson L. E., Oroszlan S., Garber E. A., Hanafusa H. 1985; Amino terminal myristylation of protein kinase p60src, a retroviral transforming protein. Science 227:427–429
    [Google Scholar]
  48. Sefton B. M., Trowbridge J. S., Cooper J. A., Scolnick E. M. 1982; The transforming proteins of Rous sarcoma virus, Harvey sarcoma virus and Abelson virus contain tightly bound lipid. Cell 31:465–474
    [Google Scholar]
  49. Seto J. T., Rott R. 1966; Functional significance of sialidase during influenza virus multiplication. Virology 30:731–737
    [Google Scholar]
  50. Sleigh M. J., Both G. W., Brownlee G. G., Bender V. J., Moss B. A. 1980; The haemagglutinin gene of influenza A virus: nucleotide sequence analysis of cloned DNA copies. In Structure and Variation in Influenza Virus pp 69–78 Edited by Laver W. G., Air G. M. New York & Amsterdam: Elsevier/North-Holland;
    [Google Scholar]
  51. Slomiany A., Witas H., Aono M., Slomiany B. L. 1983; Covalently linked fatty acids in gastric mucus glycoprotein of cystic fibrosis patients. Journal of Biological Chemistry 258:8535–8538
    [Google Scholar]
  52. Stadler J., Gerisch G., Bauer G., Deppert W. 1985; In vivo acylation of Dictyostelium actin with palmitic acid. EMBO Journal 4:1153–1156
    [Google Scholar]
  53. Stoffel W., Hillen H., Schrӧder W., DeutzmanN R. 1983; The primary structure of bovine myelin lipophilin (proteolipid apo-protein). Hoppe-Seyler’s Zeitschrift für physiologische Chemie 364:1455–1466
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-66-12-2635
Loading
/content/journal/jgv/10.1099/0022-1317-66-12-2635
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error