Comparisons between the Primary Structure of the Coat Proteins of Turnip Yellow Mosaic Virus and Eggplant Mosaic Virus Free

Abstract

SUMMARY

Comparison of the primary structures of eggplant mosaic virus (EMV) and turnip yellow mosaic virus (TYMV) coat proteins shows that 32% of their amino acids are conserved. Alignment of the two sequences requires only one deletion near the N terminus and two insertions at the C terminus of TYMV coat protein. Although the coat protein of EMV is on average less hydrophobic than that of TYMV, structural predictions yield fairly similar conformations for the two proteins, apart from the N terminus. Neither coat protein possesses an accumulation of basic residues able to form the strong ionic RNA-protein interactions observed in serveral other isometric viruses. The nature of the amino acid exchanges seems to be different from that seen in families of homologous proteins. The highly conserved regions encompass a (probably weak) potential RNA-protein interaction site. Implications for the structure and stability of small isometric viruses are discussed.

Keyword(s): coat proteins , structure and tymovirus
Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-66-12-2571
1985-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/66/12/JV0660122571.html?itemId=/content/journal/jgv/10.1099/0022-1317-66-12-2571&mimeType=html&fmt=ahah

References

  1. Argos P. 1981; Secondary structure prediction of plant virus coat proteins. Virology 110:55–62
    [Google Scholar]
  2. Bouley J. P., Briand J. P., Witz J. 1977; The stability of eggplant mosaic virus: action of urea and alkaline pH on top and bottom components. Virology 78:425–432
    [Google Scholar]
  3. Chou P. Y., Fasman G. D. 1974; Prediction of protein conformation. Biochemistry 13:222–245
    [Google Scholar]
  4. Chou P. Y., Fasman G. D. 1978; Empirical predictions of protein conformation. Annual Review of Biochemistry 47:251–276
    [Google Scholar]
  5. Dayhoff M. O. (editor) 1972 Atlas of Protein Sequence and Structure Washington, D,. C.: NBR Foundation, Georgetown University;
    [Google Scholar]
  6. Dayhoff M. O., Schwartz R. M., Orcutt B. C. 1978; A model of evolutionary change in proteins. In Atlas of Protein Sequence and Structure vol 5: supplement 3 pp 345–352 Edited by Dayhoff M. O. Washington, D.C.: NBR Foundation, Georgetown University;
    [Google Scholar]
  7. Dupin A., Peter R., Collot D., Das B. C., Peter C., Bouillon P., Duranton H. 1984; The primary structure of the eggplant mosaic virus (EMV) coat protein. Comptes rendus hebdomadaires des seances de I’Academie des sciences, séerie C 298:219–221
    [Google Scholar]
  8. Ehresmann B., Briand I. P., Reinbolt J., Witz J. 1980; Identification of binding sites of turnip yellow mosaic virus protein and RNA by crosslinks induced in situ. European Journal of Biochemistry 108:123–129
    [Google Scholar]
  9. Guilley H., Briand J. P. 1978; Nucleotide sequence of turnip yellow mosaic virus coat protein mRNA. Cell 15:113–122
    [Google Scholar]
  10. Harrison S. C. 1983; Virus structure: high resolution perspectives. Advances in Virus Research 28:175–240
    [Google Scholar]
  11. Hélène C., Lancelot G. 1982; Interactions between functional groups in protein-nucleic acid associations. Progress in Biophysics and Molecular Biology 39:1–68
    [Google Scholar]
  12. Hopp T. P., Woods K. R. 1981; Prediction of protein antigenic determinants from amino acid sequences. Proceedings of the National Academy of Sciences, U. S. A 78:3824–3828
    [Google Scholar]
  13. Jacrot B., Chauvin C., Witz J. 1978; Comparative neutron small angle scattering study of small spherical RNA viruses. Nature, London 266:417–421
    [Google Scholar]
  14. Kaper J. M. 1975 The Chemical Basis of Virus Structure, Dissociation and Reassembly. Frontiers of Biology series Edited by Neuberger A., Tatum E. L. Amsterdam: North-Holland;
    [Google Scholar]
  15. Koenig R. 1976; A loop-structure in the serological classification system of tymoviruses. Virology 72:1–5
    [Google Scholar]
  16. Koenig R., Lesemann D. E. 1979; Tymovirus group. Commonwealth Mycological Institut/ Association of Applied Biologists Descriptions of Plant Viruses no. 214
    [Google Scholar]
  17. Koenig R., Lesemann D. E. 1981; Tymoviruses. In Handbook of Plant Virus Infections and Comparative Diagnosis pp 33–60 Edited by Kurstak E. Amsterdam: Elsevier/North-Holland;
    [Google Scholar]
  18. Konigsberg W., Matta T., Katze J., Weber K. 1970; Amino acid sequence of the Q/f coat protein. Nature, London 221:271–273
    [Google Scholar]
  19. Lyttleton J. W., Matthews R. E. F. 1958; Release of nucleic acid from turnip yellow mosaic virus under mild conditions. Virology 6:460–471
    [Google Scholar]
  20. Paul H. L., Gibbs A., Wittman-Liebold B. 1980; The relationship of certain tymoviruses assessed from the amino acid composition of their coat protiens. Intervirology 13:99–109
    [Google Scholar]
  21. Peter R., Stehelin D., Reinbolt J., Collot D., Duranton H. 1972; Primary structure of turnip yellow mosaic virus coat protein. Virology 49:615–617
    [Google Scholar]
  22. Pratt D., Briand J. P., Van Regenmortel M. H. V. 1980; Immunochemical studies of turnip yellow mosaic virus. I. Localization of four antigenic regions in the protein subunit. Molecular Immunology 17:1167–1171
    [Google Scholar]
  23. Quesniaux V., Briand J. P., Van Regenmortel M. H. V. 1983a; Immunochemical studies of turnip yellow mosaic virus. II. Localization of a viral epitope in the N-terminal residues of the coat protein. Molecular Immunology 20:179–185
    [Google Scholar]
  24. Quesniaux V., Jaegle M., Van Regenmortel M. H. V. 1983b; Immunochemical studies of turnip yellow mosaic virUS. III. Localization of two viral epitopes in residues 57–64 and 183–189 of the coat protein. Biochimica et Biophysica acta 743:226–231
    [Google Scholar]
  25. Racaniello V., Baltimore D. 1981; Molecular cloning of poliovirus cDN A and determination of the complete nucleotide sequence of the viral genome. Proceedings of the National Academy of Sciences, U. S. A 78:4887–4891
    [Google Scholar]
  26. Rice D. M., Schulz G. E., Guest J. R. 1984; Structural relationship between glutathione reductase and lipoamide dehydrogenase. Journal of Molecular Biology 174:483–496
    [Google Scholar]
  27. Rossmann M. G., Abad-Zapatero C., Murthy M. R., Liljas K., Jones A., Strandberg B. 1983; Structural comparisons of some small spherical viruses. Journal of Molecular Biology 165:711–736
    [Google Scholar]
  28. Sauer R. T., Yocum R. R., Doolittle R. F., Lewis M., Pabo C. O. 1982; Homology among DNA-binding proteins suggests use of a conserved super-secondary structure. Nature, London 298:447–451
    [Google Scholar]
  29. Schiffer M., Edmundson A. B. 1967; Use of helical wheels to represent the structures of proteins and to identify segments with helical potential. Biophysical Journal 7:121–135
    [Google Scholar]
  30. Schwartz R. M., Dayhoff M. O. 1978; Matrices for detecting distant relationships. In Atlas of Protein Sequence and Structure vol 5: supplement 3 pp 353–359 Edited by Dayhoff M. O. Washington, D.C.: NBR Foundation, Georgetown University;
    [Google Scholar]
  31. Staden R. 1982; An interactive graphics program for comparing and aligning nucleic acid and amino acid sequences. Nucleic Acids Research 10:2951–2961
    [Google Scholar]
  32. Stubbs G., Warren S., Holmes K. C. 1977; Structure of RNA and RNA binding site in tobacco mosaic virus from 4 A map calculated from X-ray fibre diagrams. Nature, London 267:216–221
    [Google Scholar]
  33. Virudachalam R., Sitaraman K., Heuss K. L., Argos P., Markley J. L. 1983; Carbon-13 and proton nuclear magnetic resonance spectroscopy of plant viruses: evidence for protein-nucleic acid interactions in belladonna mottle virus and detection of polyamines in turnip yellow mosaic virus. Virology 130:360–371
    [Google Scholar]
  34. Westhoff E., Altschuh D., Moras D., Bloomer A. C., Mondragon A., Klug A., Van Regenmortel M. H. V. 1984; Correlation between segmental mobility and the location of antigenic determinants in proteins. Nature, London 311:123–126
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-66-12-2571
Loading
/content/journal/jgv/10.1099/0022-1317-66-12-2571
Loading

Data & Media loading...

Most cited Most Cited RSS feed