Production of a Monoclonal Antibody against an Epitope on HeLa Cells that Is the Functional Poliovirus Binding Site Free

Abstract

SUMMARY

Cell lines of primate origin carry receptors on their plasma membrane which are responsible for the specific binding of poliovirus. This paper describes the isolation and characterization of a monoclonal antibody reacting with the plasma membrane of HeLa cells. The antibody (D171) was selected for its protection of HeLa cells against the cytopathic effect of poliovirus type 1. This protection was found to extend to all three viral serotypes, while the replication of five other viruses in HeLa cells was not affected. The I-labelled purified antibody did not react with cell lines derived from pig, dog or rodents but bound specifically to all lines of human or primate origin. Immunoglobulin or Fab fragments of D171 prevented the binding of S-labelled poliovirus to HeLa cells. Conversely, nearly all binding sites of I-labelled D171 immunoglobulins or Fab fragments could be blocked after preincubation of HeLa cells with poliovirus. These results indicate that D171 recognizes the poliovirus receptor site on different susceptible cells and that practically all D171 binding sites are involved in the specific attachment of poliovirus to the plasma membrane. To determine whether the epitope recognized by D171 could be separated from the receptor for poliovirus, human-mouse cell hybrids were prepared and analysed. In all 40 clones tested, the susceptibility to poliovirus correlated with the binding of D171.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-66-12-2563
1985-12-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/66/12/JV0660122563.html?itemId=/content/journal/jgv/10.1099/0022-1317-66-12-2563&mimeType=html&fmt=ahah

References

  1. Campbell B. A., Cords C. E. 1983; Monoclonal antibodies that inhibit attachment of group B coxsackieviruses. Journal of Virology 48:561–564
    [Google Scholar]
  2. Childs R. A., Gregoriou M., Scudder P., Thorpe S. J., Rees A. R., Feizi T. 1984; Blood group-active carbohydrate chains on the receptor for epidermal growth factor of A431 cells. EMBO Journal 3:2227–2233
    [Google Scholar]
  3. Crowell R. L., Landau B. J. 1983; Receptors in the initiation of picornavirus infections. In Comprehensive Virology vol 18: pp 1–42 Edited by H. Fraenkel-Conrat, Wagner R. R. New York & London: Plenum Press;
    [Google Scholar]
  4. Crowell R. L., SiaK J.-S. 1978; Receptor for group B coxsackieviruses: characterization and extraction from HeLa cell plasma membranes. In Perspectives in Virology vol 10: pp 39–55 Edited by Pollard M. New York: Raven Press;
    [Google Scholar]
  5. Crowell R. L., Landau B. J., Siak J. S. 1981; Picornavirus receptors in pathogenesis. In Virus Receptors, Part 2. Receptors and Recognition Series B, vol 8: pp 171–184 Edited by Lonberg-Holm K., Philipson L. London: Chapman & Hall;
    [Google Scholar]
  6. Emini E. A., Jameson B. A., Wimmer E. 1983; Priming for and induction of anti-poliovirus neutralizing antibodies by synthetic peptides. Nature, London 304:699–703
    [Google Scholar]
  7. Ey P. L., Prowse S. J., Jenkin C. R. 1978; Isolation of pure IgG1, IgG2a and IgG2b immunoglobulins from mouse serum using Protein A-Sepharose. Immunochemistry 15:429–436
    [Google Scholar]
  8. Fingeroth J. D., Weis J. J., Tedder T. F., Strominger J. L., Biro P. A., Fearon D. T. 1984; EpStein-Barr virus receptor of human B lymphocytes is the C3d receptor CR2. Proceedings of the National Academy of Sciences, U. S. A 81:4510–4514
    [Google Scholar]
  9. Fraker P. J., Speck J. C. 1978; Protein and cell membrane iodinations with a sparingly soluble chloroamide, 1, 3, 4, 6-tetrachloro-3a, 6a-diphenylglycoluril. Biochemical and Biophysical Research Communications 80:849–857
    [Google Scholar]
  10. Goding J. W. 1980; Antibody production by hybridomas. Journal of Immunological Methods 39:285–308
    [Google Scholar]
  11. Guttman N., Baltimore D. 1977; A plasma membrane component able to bind and alter virions of poliovirus type 1: studies on cell-free alteration using a simplified assay. Virology 82:25–36
    [Google Scholar]
  12. Holland J. J. 1961; Receptor affinities as major determinants of enterovirus tissue tropisms in humans. Virology 15:312–326
    [Google Scholar]
  13. Kitamura N., Semler B. L., Rothberg P. G., Larsen G. R., Adler C. J., Dorner A. J., Emini E. A., Hanecak R., Lee J. J., Van der Werf S., Anderson C. W., Wimmer E. 1981; Primary structure, gene organization and polypeptide expression of poliovirus RNA. Nature, London 291:547–553
    [Google Scholar]
  14. Koch F., Koch G. 1985 The Molecular Biology of Poliovirus Wien & New York: Springer-Verlag;
    [Google Scholar]
  15. Koch G., Quintrell N., Bishop J. M. 1966; An agar cell-suspension plaque assay for isolated viral RNA. Biochemical and Biophysical Research Communications 24:304–309
    [Google Scholar]
  16. Krah D. L., Crowell R. L. 1982; A solid-phase assay of solubilized HeLa cell membrane receptors for binding group B coxsackieviruses and polioviruses. Virology 118:148–156
    [Google Scholar]
  17. Lebman D., Trucco M., Bottero L., Lange B., Pessano S., Rovera G. 1982; A monoclonal antibody that detects expression of transferrin receptor in human erythroid precursor cells. Blood 59:671–678
    [Google Scholar]
  18. Mcdougal J. S., Browning S. W., Kennedy S., Moore D. D. 1983; Immunodot assay for determining the isotype and light chain type of murine monoclonal antibodies in unconcentrated hybridoma culture supernates. Journal of Immunological Methods 63:281–290
    [Google Scholar]
  19. Mage M. G. 1980; Preparation of Fab fragments from IgGs of different animal species. Methods in 70:143–150
    [Google Scholar]
  20. Miller D. A., Miller O. J., Dev V. G., Hashmi S., Tantravahi R., MEdrano L., GREEN H. 1974; Human chromosome 19 carries a poliovirus receptor gene. Cell 1:167–173
    [Google Scholar]
  21. Minor P. D., Schild G. C., Bootman J., Evans D. M. A., Ferguson M., Reeve P., Spitz M., Stanway G., Cann J., Hauptmann R., Clarke L. D., Mountford R. C., Almond J. W. 1983; Location and primary structure of a major antigenic site for poliovirus neutralization. Nature, London 301:674–679
    [Google Scholar]
  22. Minor P. D., Pipkin P. A., Hockley D., Schild G. C., Almond J. W. 1984; Monoclonal antibodies which block cellular receptors of polioviruses. Virus Research 1:203–212
    [Google Scholar]
  23. Noda M., Selinger Z., Scolnick E. M., Bassin R. H. 1983; Flat revertants isolated from Kirsten sarcoma virus-transformed cells are resistant to the action of specific oncogenes. Proceedings of the National Academy of Sciences, U. S. A 80:5602–5606
    [Google Scholar]
  24. Schärli C. E., Koch G. 1984; Protein kinase activity in purified poliovirus particles and empty viral capsid preparations. Journal of General Virology 65:129–139
    [Google Scholar]
  25. Wychowski C., Van der Werf S., Siffert O., Crainic R., Bruneau P., Girard M. 1983; A poliovirus type 1 neutralization epitope is located within amino acid residues 93 to 104 of viral capsid polypeptide VP1. EMBO Journal 2:2019–2024
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-66-12-2563
Loading
/content/journal/jgv/10.1099/0022-1317-66-12-2563
Loading

Data & Media loading...

Most cited Most Cited RSS feed