1887

Abstract

SUMMARY

Supercoiled plasmid molecules containing cloned copies of a DNA fragment which includes a functional herpes simplex virus type 1 origin of DNA replication were cleaved preferentially at two positions within the viral insert by nuclease S1. Plasmids with molecular linker insertions at these sites were constructed, and analysis of two representative plasmids demonstrated the presence of palindromic DNA sequences at the preferred cleavage positions. One of these palindromic sequences occurred within a 90 bp region in which the -acting sequences essential for viral origin function had previously been located. Insertion of a linker at this position abolished origin activity, demonstrating an essential role for sequences within the palindrome in the initiation of DNA synthesis. In transfection assays, plasmids containing a functional viral origin of DNA replication markedly interfered with the infectivity of non-defective viral DNA even in the absence of viral encapsidation signals. Inactivation of the origin greatly reduced this effect on DNA infectivity, suggesting that viral interference may be mediated by a mechanism involving the replicative machinery.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-66-1-31
1985-01-01
2021-10-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/66/1/JV0660010031.html?itemId=/content/journal/jgv/10.1099/0022-1317-66-1-31&mimeType=html&fmt=ahah

References

  1. Bergsma D. J., Olive D. M., Hartzell S. W., Subramanian K. N. 1982; Territorial limits and functional anatomy of the simian virus 40 replication origin. Proceedings of the National Academy of Sciences, U.S.A 79:4773–4777
    [Google Scholar]
  2. Broach J. R., Li Y.-Y., Feldman I., Jayram M., Abraham J., Nasmyth K. A., Hicks J. B. 1982; Localization and sequence analysis of yeast origins of DNA replication. Cold Spring Harbor Symposia on Quantitative Biology 47:1165–1173
    [Google Scholar]
  3. Bronson D. L., Dreesman G. R., Biswal N., Benyesh-Melnick M. 1973; Defective virions of herpes simplex viruses. Intervirology 1:141–153
    [Google Scholar]
  4. Cuifo D. M., Hayward G. S. 1981; Tandem repeat defective DNA from the L segment of the HSV genome. In Herpesvirus DNA pp 107–128 Edited by Becker Y. The Hague: Martinus Nijhoff;
    [Google Scholar]
  5. Davison A. J., Wilkie N. M. 1981; Nucleotide sequences of the joint between the L and S segments of herpes simplex virus types 1 and 2. Journal of General Virology 55:315–331
    [Google Scholar]
  6. Denniston K. J., Madden M. J., Enquist L. W., Vande Woude G. 1981; Characterization of coliphage lambda hybrids carrying DNA fragments from herpes simplex virus type 1 defective interfering particles. Gene 15:365–378
    [Google Scholar]
  7. Drouin J. 1980; Cloning of human mitochondrial DNA in Escherichia coli. Journal of Molecular Biology 140:15–34
    [Google Scholar]
  8. Frenkel N., Jacob R. J., Honess R. W., Hayward G. S., Locker H., Roizman B. 1975; Anatomy of herpes simplex virus DNA. III. Characterization of defective DNA molecules and biological properties of virus populations containing them. Journal of Virology 16:153–167
    [Google Scholar]
  9. Frenkel N., Locker H., Batterson W., Hayward G. S., Roizman B. 1976; Anatomy of herpes simplex virus DNA. VI. Defective DNA originates from the S component. Journal of Virology 20:527–531
    [Google Scholar]
  10. Frenkel N., Locker H., Vlazny D. A. 1980; Studies of defective herpes simplex viruses. Annals of the New York Academy of Sciences 354:347–370
    [Google Scholar]
  11. Friedmann A., Shlomai J., Becker Y. 1977; Electron microscopy of herpes simplex virus DNA molecules isolated from infected cells by centrifugation in CsCl density gradients. Journal of General Virology 34:507–522
    [Google Scholar]
  12. Gluzman Y., Frisque R. J., Sambrook J. 1980; Origin-defective mutants of SV40. Cold Spring Harbor Symposia on Quantitative Biology 44:293–300
    [Google Scholar]
  13. Grafstrom R. H., Alwine J. C., Steinhart W. L., Hill C. W. 1974; Terminal repetitions in herpes simplex virus type 1 DNA. Cold Spring Harbor Symposia on Quantitative Biology 39:679–681
    [Google Scholar]
  14. Graham B. J., Bengali Z., Vande Woude G. F. 1978; Physical map of the origin of defective DNA in herpes simplex virus type 1 DNA. Journal of Virology 25:878–887
    [Google Scholar]
  15. Graham F. L., van Der Eb A. J. 1973; A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52:456–467
    [Google Scholar]
  16. Hanahan D. 1983; Studies on transformation of Escherichia coli with plasmids. Journal of Molecular Biology 166:557–580
    [Google Scholar]
  17. Hennes-Stegmann B., Schröder C. H. 1982; Low infectivity of HSV-1 DNA caused by defective interfering genomes. Journal of General Virology 63:307–314
    [Google Scholar]
  18. Kaerner H. C., Maichle I. B., Ott A., Schröder C. H. 1979; Origin of two different classes of defective HSV-1 Angelotti DNA. Nucleic Acids Research 6:1467–1478
    [Google Scholar]
  19. Kaerner H. C., Ott-Hartmann A., Schatten R., Schröder C. H., Gray C. P. 1981; Amplification of a short nucleotide sequence in the repeat units of defective herpes simplex virus type 1 Angelotti DNA. Journal of Virology 39:75–81
    [Google Scholar]
  20. Lacks S., Greenberg B. 1977; Complementary specificity of restriction endonucleases of Diplococcus pneumoniae with respect to DNA methylation. Journal of Molecular Biology 114:153–168
    [Google Scholar]
  21. Lilley D. M. J. 1980; The inverted repeat as a recognizable structural feature in supercoiled DNA molecules. Proceedings of the National Academy of Sciences, U.S.A 77:6468–6472
    [Google Scholar]
  22. Lilley D. M. J., Kemper B. 1984; Cruciform-resolvase interactions in supercoiled DNA. Cell 36:413–422
    [Google Scholar]
  23. Luthman H., Nilsson M.-G., Magnusson G. 1982; Non-contiguous segments of the polyoma genome required in cis for DNA replication. Journal of Molecular Biology 161:533–550
    [Google Scholar]
  24. Macpherson I., Stoker M. 1962; Polyoma transformation of hamster cell clones – an investigation of genetic factors affecting cell competence. Virology 16:147–151
    [Google Scholar]
  25. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: A Laboratory Manual New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  26. Maxam A. M., Gilbert W. 1980; Sequencing end-labeled DNA with base-specific chemical cleavages. Methods in Enzymology 65:499–560
    [Google Scholar]
  27. Mocarski E. S., Roizman B. 1981; Site-specific inversion sequence of the herpes simplex virus genome: domain and structural features. Proceedings of the National Academy of Sciences, U.S.A 78:7047–7051
    [Google Scholar]
  28. Mocarski E. S., Roizman B. 1982; Herpesvirus-dependent amplification and inversion of cell-associated viral thymidine kinase gene flanked by viral sequences and linked to an origin of viral DNA replication. Proceedings of the National Academy of Sciences, U.S.A 79:5626–5630
    [Google Scholar]
  29. Murchie M.-J., McGeoch D. J. 1982; DNA sequence analysis of an immediate-early gene region of the herpes simplex virus type 1 genome (map coordinates 0.950 to 0.978). Journal of General Virology 62:1–15
    [Google Scholar]
  30. Murray B. K., Biswal N., Bookout J. B., Lanford R. E., Courtney R. J., Melnick J. L. 1975; Cyclic appearance of defective interfering particles of herpes simplex virus and the concomitant accumulation of early polypeptide VP175. Intervirology 5:173–184
    [Google Scholar]
  31. Myers R. M., Tjian R. 1980; Construction and analysis of simian virus 40 origins defective in tumor antigen binding and DNA replication. Proceedings of the National Academy of Sciences, U.S.A 77:6491–6495
    [Google Scholar]
  32. Panayotatos N., Wells R. D. 1981; Cruciform structures in supercoiled DNA. Nature, London 289:466–470
    [Google Scholar]
  33. Preston C. M., Cordingley M. G., Stow N. D. 1984; Analysis of DNA sequences which regulate the transcription of a herpes simplex virus immediate early gene. Journal of Virology 50:708–716
    [Google Scholar]
  34. Rijnders A. W. M., van Bergen B. G. M., van Der Vliet P. C., Sussenbach J. S. 1983; Specific binding of the adenovirus terminal protein precursor-DNA polymerase complex to the origin of DNA replication. Nucleic Acids Research 11:8777–8789
    [Google Scholar]
  35. Roizman B. 1979; The structure and isomerization of herpes simplex virus genomes. Cell 16:481–494
    [Google Scholar]
  36. Schröder C. H., Urbaczka G. 1978; Excess of interfering over infectious particles in herpes simplex virus passaged at high m.o.i. and their effect on single-cell survival. Journal of General Virology 41:493–501
    [Google Scholar]
  37. Schröder C. H., Furst B., Weise K., Gray C. P. 1984; A study of interfering herpes simplex virus DNA preparations containing defective genomes of either class I or II and the identification of minimal requirements for interference. Journal of General Virology 65:493–506
    [Google Scholar]
  38. Southern E. M. 1975; Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98:503–517
    [Google Scholar]
  39. Spaete R. R., Frenkel N. 1982; The herpes simplex virus amplicon: a new eucaryotic defective-virus cloning-amplifying vector. Cell 30:295–304
    [Google Scholar]
  40. Stow N. D. 1982; Localization of an origin of DNA replication within the TRs/IRs, repeated region of the herpes simplex virus type 1 genome. EMBO Journal 1:863–867
    [Google Scholar]
  41. Stow N. D., McMonagle E. C. 1983; Characterization of the TRs/IRs origin of DNA replication of herpes simplex virus type 1. Virology 130:427–438
    [Google Scholar]
  42. Stow N. D., Wilkie N. M. 1976; An improved technique for obtaining enhanced infectivity with herpes simplex virus type 1 DNA. Journal of General Virology 33:447–458
    [Google Scholar]
  43. Stow N. D., McMonagle E. C., Davison A. I. 1983; Fragments from both termini of the herpes simplex virus type 1 genome contain signals required for the encapsidation of viral DNA. Nucleic Acids Research 11:8205–8220
    [Google Scholar]
  44. Tamanoi F., Stillman B. W. 1983; Initiation of adenovirus DNA replication in vitro requires a specific DNA sequence. Proceedings of the National Academy of Sciences, U.S.A 80:6446–6450
    [Google Scholar]
  45. Van Bergen B. G. M., van Der Ley P. A., van Driel W., van Mansfeld A. D. M., van Der Vleit P. C. 1983; Replication of origin containing adenovirus DNA fragments that do not carry the terminal protein. Nucleic Acids Research 11:1975–1990
    [Google Scholar]
  46. Vlazny D. A., Frenkel N. 1981; Replication of herpes simplex virus DNA: localization of replication signals within defective virus genomes. Proceedings of the National Academy of Sciences, U.S.A 78:742–746
    [Google Scholar]
  47. Wagner M., Skare J., Summers W. C. 1974; Analysis of DNA of defective herpes simplex virus type 1 by restriction endonuclease cleavage and nucleic acid hybridization. Cold Spring Harbor Symposia on Quantitative Biology 39:683–686
    [Google Scholar]
  48. Wilkie N. M. 1973; The synthesis and substructure of herpesvirus DNA: the distribution of alkali-labile single strand interruptions in HSV-1 DNA. Journal of General Virology 21:453–467
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-66-1-31
Loading
/content/journal/jgv/10.1099/0022-1317-66-1-31
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error