Identification of a Herpes Simplex Virus Type 1 Polypeptide Which Is a Component of the Virus-induced Ribonucleotide Reductase Free

Abstract

SUMMARY

We have characterized a temperature-sensitive mutant of herpes simplex virus type 1 (HSV-1), 17VP1207, that induces a thermolabile ribonucleotide reductase activity. This mutant was derived from the multiple mutant G. Fine-structure mapping studies showed that the defect in 17VP1207 lies within an 800 bp sequence between genome map coordinates 0.580 and 0.585 in the gene encoding a polypeptide of 140000 mol. wt. (Vmw136, ICP6). Since the mutation in this polypeptide produced a temperature-sensitive ribonucleotide reductase activity, Vmw136 must be a component of the herpes simplex virus-induced ribonucleotide reductase. The mRNA of Vmw136 has a common 3′ terminus with an mRNA encoding a 38000 mol. wt. polypeptide (Vmw38). Although the polypeptide-coding sequences of these mRNAs do not overlap, monoclonal antibodies against Vmw136 immunoprecipitated Vmw38 as well as Vmw136 from wild-type HSV-1-infected cells. Our data do not exclude the possibility that Vmw38 is part of the ribonucleotide reductase complex but suggest that this species on its own is not responsible for the HSV-induced enzyme activity.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-65-9-1457
1984-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/65/9/JV0650091457.html?itemId=/content/journal/jgv/10.1099/0022-1317-65-9-1457&mimeType=html&fmt=ahah

References

  1. Anderson K. P., Frink R. J., Devi G. B., Gaylord B. H., Costa R. H., Wagner E. K. 1981; Detailed characterization of the mRNA mapping in the Hind III fragment K region of the herpes simplex virus type 1 genome. Journal of Virology 37:1011–1027
    [Google Scholar]
  2. Averett D. R., Lubbers C., Elion G. B., Spector T. 1983; Ribonucleotide reductase induced by herpes simplex type 1 virus. Characterization of a distinct enzyme. Journal of Biological Chemistry 258:9831–9838
    [Google Scholar]
  3. Bacchetti S., Evelegh M. J., Muirhead B., Sartori C. S., Huszar D. 1984; Immunological characterization of herpes simplex virus type 1 and 2 polypeptide(s) involved in viral ribonucleotide reductase activity. Journal of Virology 49:591–593
    [Google Scholar]
  4. Berglund O. 1972a; Ribonucleotide diphosphate reductase induced by bacteriophage T4. I. Purification and characterization. Journal of Biological Chemistry 247:7270–7275
    [Google Scholar]
  5. Berglund O. 1972b; Ribonucleotide diphosphate reductase induced by bacteriophage T4. II. Allosteric regulation of substrate specificity and catalytic activity. Journal of Biological Chemistry 247:7276–7281
    [Google Scholar]
  6. Brown S. M., Ritchie D. A., Subak-Sharpe J. H. 1973; Genetic studies with herpes simplex virus type 1. The isolation of temperature-sensitive mutants, their arrangement into complementation groups and recombination analysis leading to a linkage map. Journal of General Virology 18:329–346
    [Google Scholar]
  7. Cohen G. H. 1972; Ribonucleotide reductase activity of synchronized KB cells infected with herpes simplex virus. Journal of Virology 9:408–418
    [Google Scholar]
  8. Chu C.-T., Parris D. S., Dixon R. A. F., Farber F. E., Schaffer P. A. 1979; Hydroxylamine mutagenesis of HSV, DNA and DNA fragments: introduction of mutations into selected regions of the viral genome. Virology 98:168–181
    [Google Scholar]
  9. Draper K. G., Frink R. J., Wagner E. W. 1982; Detailed characterization of an apparently unspliced herpes simplex virus type 1 gene mapping in the interior of another. Journal of Virology 43:1123–1128
    [Google Scholar]
  10. Dutia B. M. 1983; Ribonucleotide reductase induced by herpes simplex virus has a virus-specified constituent. Journal of General Virology 64:513–521
    [Google Scholar]
  11. Galloway D. A., McDougall J. K. 1981; Transformation of rodent cells by a cloned DNA fragment of herpes simplex virus type 2. Journal of Virology 38:749–760
    [Google Scholar]
  12. Galloway D. A., McDougall J. K. 1983; The oncogenic potential of herpes simplex viruses: evidence for a ‘hit- and-run’ mechanism. Nature, London 302:21–24
    [Google Scholar]
  13. Galloway D. A., Goldstein L. C., Lewis J. B. 1982; Identification of proteins encoded by a fragment of herpes virus type 2 DNA that has transforming activity. Journal of Virology 42:530–537
    [Google Scholar]
  14. Holland L. E., Anderson K. P., Stringer J. R., Wagner E. K. 1979; Isolation and localization of herpes simplex virus type 1 mRNA abundant before viral synthesis. Journal of Virology 31:447–462
    [Google Scholar]
  15. Holland L. E., Anderson K. P., Shipman C. Jr, Wagner E. K. 1980; Viral DNA synthesis is required for the efficient expression of specific herpes simplex virus type 1 mRNA species. Virology 101:10–24
    [Google Scholar]
  16. Honess R. W., Roizman B. 1973; Proteins specified by herpes simplex virus. XI. Identification and relative molar rates of synthesis of structural and non-structural herpes virus polypeptides in the infected cell. Journal of Virology 12:1347–1365
    [Google Scholar]
  17. Honess R. W., Roizman B. 1974; Regulation of herpes virus macromolecular synthesis. I. Cascade regulation of the synthesis of three groups of viral proteins. Journal of Virology 14:8–19
    [Google Scholar]
  18. Huszar D., Bacchetti S. 1981; Partial purification and characterization of the ribonucleotide reductase induced by herpes simplex virus infection of mammalian cells. Journal of Virology 37:580–588
    [Google Scholar]
  19. Huszar D., Bacchetti S. 1983; Is ribonucleotide reductase the transforming function of herpes simplex virus 2?. Nature, London 302:76–79
    [Google Scholar]
  20. Huszar D., Beharry S., Bacchetti S. 1983; Herpes simplex virus-induced ribonucleotide reductase: development of antibodies specific for the enzyme. Journal of General Virology 64:1327–1335
    [Google Scholar]
  21. Jamieson A. T., Gentry G. A., Subak-Sharpe J. H. 1974; Induction of both thymidine and deoxycytidine kinase activity by herpes viruses. Journal of General Virology 24:465–480
    [Google Scholar]
  22. Jariwalla R. J., Aurelian L., Ts’o P. P. P. 1980; Tumorigenic transformation induced by a specific fragment of DNA from herpes simplex virus type 2. Proceedings of the National Academy of Sciences, U. S. A 77:2279–2283
    [Google Scholar]
  23. Kafatos F., Jones C. W., Efstratiadis A. 1979; Determination of nucleic acid sequence homologies and relative concentrations by a dot hybridization procedure. Nucleic Acids Research 7:1541–1552
    [Google Scholar]
  24. Langelier Y., Buttin G. 1981; Characterization of ribonucleotide reductase induction in BHK-21/C13 Syrian hamster cell line upon infection by herpes simplex virus (HSV). Journal of General Virology 57:21–31
    [Google Scholar]
  25. Langelier Y., Dechamps M., Buttin G. 1978; Analysis of dCMP deaminase and CDP reductase levels in hamster cells infected with herpes simplex virus. Journal of Virology 26:547–553
    [Google Scholar]
  26. Lankinen H., Graslund A., Thelander L. 1982; Induction of a new ribonucleotide reductase after infection of mouse L cells with pseudorabies virus. Journal of Virology 41:893–900
    [Google Scholar]
  27. Leary K., Bratton J., Francke B. 1983; Replication of herpes simplex virus type 1 on hydroxyurea-resistant baby hamster kidney cells. Journal of Virology 47:224–226
    [Google Scholar]
  28. Machtiger N. A., Pancake B. A., Eberle R., Courtney R. J., Tevethia S. S., Schaffer P. A. 1980; Herpes simplex virus glycoproteins: isolation of mutants resistant to immune cytolysis. Journal of Virology 34:336–346
    [Google Scholar]
  29. McLauchlan J., Clements J. B. 1982; A 3′ co-terminus of two early herpes simplex virus type 1 mRNAs. Nucleic Acids Research 10:501–512
    [Google Scholar]
  30. McLauchlan J., Clements J. B. 1983a; Organization of the herpes simplex virus type 1 transcription unit encoding two early proteins with molecular weights of 140000 and 40000. Journal of General Virology 64:997–1006
    [Google Scholar]
  31. McLauchlan J., Clements J. B. 1983b; DNA sequence homology between two co-linear loci on the HSV genome which have different transforming abilities. EMBO Journal 2:1953–1961
    [Google Scholar]
  32. Macpherson I., Stoker M. 1962; Polyoma transformation of hamster cell clones - an investigation of genetic factors affecting cell competence. Virology 16:147–151
    [Google Scholar]
  33. Marsden H. S., Stow N. D., Preston V. G., Timbury M. C., Wilkie N. M. 1978; Physical mapping of herpes simplex virus-induced polypeptides. Journal of Virology 28:624–642
    [Google Scholar]
  34. Palfreyman J. W., Haarr L., Cross A., Hope R. G., Marsden H. S. 1983; Processing of herpes simplex virus type 1 glycoproteins: two-dimensional gel analysis using monoclonal antibodies. Journal of General Virology 64:873–886
    [Google Scholar]
  35. Pancake B. A., Aschman D. P., Schaffer P. A. 1983; Genetic and phenotypic analysis of herpes simplex virus type 1 mutants conditionally resistant to immune cytolysis. Journal of Virology 47:568–585
    [Google Scholar]
  36. Park M., Kitchener H. C., MacNab J. C. M. 1983; Detection of herpes simplex virus type-2 DNA restriction fragments in human cervical carcinoma tissue. EMBO Journal 2:1029–1034
    [Google Scholar]
  37. Parris D. S., Dixon R. A. F., Schaffer P. A. 1980; Physical mapping of herpes simplex type 1 ts mutants by marker rescue: correlation of the physical and genetic maps. Virology 100:275–287
    [Google Scholar]
  38. Ponce De Leon M., Eisenberg R. J., Cohen G. H. 1977; Ribonucleotide reductase from herpes simplex virus (types 1 and 2) infected and uninfected KB cells: properties of the partially purified enzymes. Journal of General Virology 36:163–173
    [Google Scholar]
  39. Preston V. G. 1981; Fine-structure mapping of herpes simplex virus type 1 temperature-sensitive mutations within the short repeat region of the genome. Journal of Virology 39:150–161
    [Google Scholar]
  40. Reyes G. R., Lafemina R., Hayward S. D., Hayward G. S. 1979; Morphological transformation by DNA fragments of human herpes viruses: evidence for two distinct transforming regions in herpes simplex virus types 1 and 2 and lack of correlation with biochemical transfer of the thymidine kinase gene. Cold Spring Harbor Symposia on Quantitative Biology 44:629–641
    [Google Scholar]
  41. Rigby P. W. J., Dieckmann M., Rhodes C., Berg P. 1977; Labelling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. Journal of Molecular Biology 113:237–251
    [Google Scholar]
  42. Schaffer P. A., Carter V. C., Timbury M. C. 1978; Collaborative complementation study of temperature-sensitive mutants of herpes simplex virus types 1 and 2. Journal of Virology 27:490–504
    [Google Scholar]
  43. Schulman M., Wilde C. D., Kohler G. 1978; A better cell line for making hybridomas secreting specific antibodies. Nature, London 276:269–270
    [Google Scholar]
  44. Showalter S. D., Zwetg M., Hampar B. 1981; Monoclonal antibodies to herpes simplex type 1 proteins, including the immediate-early protein ICP4. Infection and Immunity 34:684–692
    [Google Scholar]
  45. Stow N. D., Subak-Sharpe J. H., Wilkie N. M. 1978; Physical mapping of herpes simplex virus type 1 mutations by marker rescue. Journal of Virology 28:182–192
    [Google Scholar]
  46. Thelander L., Eriksson S., Aberman M. 1980; Ribonucleotide reductase from calf thymus. Separation of the enzyme into two nonidentical subunits, proteins Ml and M2. Journal of Biological Chemistry 255:7426–7432
    [Google Scholar]
  47. Watson R. J., Preston C. M., Clements J. B. 1979; Separation and characterization of herpes simplex virus type 1 immediate-early mRNAs. Journal of Virology 31:42–52
    [Google Scholar]
  48. Wilcox K. W., Kohn A., Sklyanskaya E., Roizman B. 1980; Herpes simplex virus phosphoproteins. I. Phosphate cycles on and off some viral polypeptides and can alter their affinity for DNA. Journal of Virology 33:167–182
    [Google Scholar]
  49. Wilkie N. M., Cortini R. 1976; Sequence arrangement in herpes simplex virus type 1 DNA: identification of terminal fragments in restriction endonuclease digests and evidence for inversions in redundant and unique sequences. Journal of Virology 20:211–221
    [Google Scholar]
  50. Zweig M., Heilman C. J. Jr, Rabin H. III, Hopkins R. F., Neubauer R. H., Hampar B. 1979; Production of monoclonal antibodies against nucleocapsid proteins of herpes simplex virus types 1 and 2. Journal of Virology 32:676–678
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-65-9-1457
Loading
/content/journal/jgv/10.1099/0022-1317-65-9-1457
Loading

Data & Media loading...

Most cited Most Cited RSS feed