Fate of Frog Virus 3 DNA Replicated in the Nucleus of Arginine-deprived CHO Cells Free

Abstract

SUMMARY

In a productive infection, frog virus 3 (FV 3) DNA was synthesized in both the cell nucleus and cytoplasm. The infection was aborted in arginine-starved Chinese hamster ovary cells and viral DNA replication was then restricted to the nuclear compartment. It has been demonstrated that the newly synthesized FV 3 DNA present in the nucleus is of genomic size. After the addition of arginine, this DNA is transferred into the cytoplasm and can be encapsidated. The formation of infectious particles occurred even if an inhibitor of DNA synthesis was added simultaneously with arginine. Although the synthesis of early FV 3 polypeptides and their intracellular distribution were comparable in the presence or in the absence of arginine, the production of late species was greatly reduced by arginine deprivation; one of these late proteins must be involved in the passage from the nuclear to the cytoplasmic phase of FV 3 DNA replication. This system made it possible to carry out an independent analysis of the nuclear events that comprise the first stage of FV 3 multiplication.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-65-4-721
1984-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/65/4/JV0650040721.html?itemId=/content/journal/jgv/10.1099/0022-1317-65-4-721&mimeType=html&fmt=ahah

References

  1. Archard L. C., Williamson J. D. 1971; The effect of arginine deprivation on the replication of vaccinia virus. Journal of General Virology 12:249–258
    [Google Scholar]
  2. Aubertin A. M. 1975; Arginine requirement for frog virus 3 development. Virology 63:573–576
    [Google Scholar]
  3. Aubertin A. M., Decker C., Kirn A. 1970; Effect of gamma rays on infectivity and capacity for nuclear associated and cytoplasmic DNA replication of FV 3 in chick embryo fibroblasts. Radiation Research 44:178–186
    [Google Scholar]
  4. Aubertin A. M., Hirth C., Travo C., Nonnenmacher H., Kirn A. 1973; Preparation and properties of an inhibitory extract from FV 3 particles. Journal of Virology 11:694–701
    [Google Scholar]
  5. Aubertin A. M., Tondre L., Martin J. P., Kirn A. 1980; Structural polypeptides of frog virus 3, phosphorylated proteins. FEES Letters 112:233–238
    [Google Scholar]
  6. Auborn K., Rouse H. 1982; Adenovirus type 2 DNA replicated in arginine-starved KB cells is infectious. Journal of Virology 44:419–421
    [Google Scholar]
  7. Becker Y., Chejanovsky N., Fridlender B. 1980; DNA-binding proteins in the nuclei of herpes simplex virus-infected, arginine-deprived, BSC-1 cells. Journal of General Virology 50:259–267
    [Google Scholar]
  8. Bingen-Brendel A., Tripier F., Kirn A. 1971; Etude morphologique séquentielle du développement du FV 3 sur cellules BHK 21. Journal de Microscopie 11:249–258
    [Google Scholar]
  9. Bonner W. M., Laskey R. A. 1974; A film detection method for tritium-labeled proteins and nucleic acids in polyacrylamide gels. European Journal of Biochemistry 46:83–88
    [Google Scholar]
  10. Cordier O. 1979 Synthèse protéique dans les cellules CHO infectées par le virus FV 3 Thèse de spécialité, Université Louis Pasteur; Strasbourg:
    [Google Scholar]
  11. Elliott R. M., Kelly D. C. 1980; Frog virus 3 replication: induction and intracellular distribution of polypeptides in infected cells. Journal of Virology 33:28–51
    [Google Scholar]
  12. Goorha R. 1982; Frog virus 3 DNA replication occurs in two stages. Journal of Virology 43:519–528
    [Google Scholar]
  13. Goorha R., Murti G. 1982; The genome of frog virus 3, an animal DNA virus, is circularly permuted and terminally redundant. Proceedings of the National Academy of Sciences, U. S. A 79:248–252
    [Google Scholar]
  14. Goorha R., Willis D. B., Granoff A. 1977; Macromolecular synthesis in cells infected by frog virus 3. VI. Frog virus 3 replication is dependent on the cell nucleus. Journal of Virology 21:802–805
    [Google Scholar]
  15. Goorha R., Murti G., Granoff A., Tirey R. 1978; Macromolecular synthesis in cells infected by frog virus 3. VIII. The nucleus is a site of frog virus 3 DNA and RNA synthesis. Virology 84:32–50
    [Google Scholar]
  16. Granoff A., Came P. E., Breeze D. C. 1966; Viruses and renal carcinoma of Rana pipiens. I. Isolation and properties of virus from normal and tumor tissue. Virology 29:133–148
    [Google Scholar]
  17. Kelly D. C. 1975; Frog virus 3 replication: electron microscope observations on the sequence of infection in chick embryo fibroblasts. Journal of General Virology 26:71–86
    [Google Scholar]
  18. Kelly D. C., Avery R. J. 1974; Frog virus 3 deoxyribonucleic acid. Journal of General Virology 24:339–348
    [Google Scholar]
  19. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 227:680–685
    [Google Scholar]
  20. Larra F., Droz B. 1970; Techniques radio autographiques et leur application à l’étude du renouvellement des constituants cellulaires. Journal de Microscopie 9:845–880
    [Google Scholar]
  21. Laskey R. A., Mills A. D. 1977; Enhanced autoradiographic detection of 32P and 125I using intensifying screens and hypersensitized film. FEBS Letters 82:314–316
    [Google Scholar]
  22. Mcauslan B. R., Smith W. R. 1968; Deoxyribonucleic acid synthesis in FV 3 infected mammalian cells. Journal of Virology 6:1006–1015
    [Google Scholar]
  23. Mans J. H., Novelli G. D. 1961; Measurement of the incorporation of radioactive amino acids into protein by a filter disc method. Archives of Biochemistry and Biophysics 94:48–53
    [Google Scholar]
  24. Martin J. P., Aubertin A. M., Lecerf F., Kirn A. 1981; Intracellular distribution and phosphorylation of virus-induced polypeptides in frog virus 3 infected cells. Virology 110:349–365
    [Google Scholar]
  25. Martin J. P., Aubertin A. M., Kirn A. 1982; Expression of frog virus 3 early genes after ultraviolet irradiation. Virology 112:402–410
    [Google Scholar]
  26. Obert G., Tripier F., Guir J. 1971; Arginine requirements for late mRNA transcription of vaccinia virus in KB cells. Biochemical and Biophysical Research Communications 44:363–366
    [Google Scholar]
  27. Obert G., Tripier F., Nonnenmacher H., Kirn A. 1980; Mise en évidence de deux étapes arginino-dépendantes du cycle vaccinal: rôle des polyamines dans la synthèse des ARNm tardifs. Annales de Virologie 131E:13–24
    [Google Scholar]
  28. Prage L., Petterson U., Philipson L. 1968; Internal basic proteins in adenovirus. Virology 36:508–511
    [Google Scholar]
  29. Rouse H. C., Schlesinger R. W. 1972; The effects of arginine starvation on macromolecular synthesis in infection with type 2 adenovirus. I. Synthesis and utilisation of structural proteins. Virology 48:463–471
    [Google Scholar]
  30. Russell W. C., Becker Y. 1968; A maturation factor for adenovirus. Virology 35:18–27
    [Google Scholar]
  31. Silberstein H., August J. T. 1976; Characterization of a virion protein kinase as a virus-specified enzyme. Journal of Biological Chemistry 251:3185–3190
    [Google Scholar]
  32. Spring S. B., Roizman B., Spear P. G. 1969; Selective failure of protein synthesis in herpesvirus infected cells deprived of arginine. Virology 38:710–712
    [Google Scholar]
  33. Wilcox K. W., Kohn A., Sklyanskaya E., Roizman B. 1980; Herpes simplex phosphoproteins. I. Phosphate cycles on and off some viral polypeptides and can alter their affinity for DNA. Journal of Virology 33:167–182
    [Google Scholar]
  34. Willis D. B., Goorha R., Miles M., Granoff A. 1977; Macromolecular synthesis in cells infected by frog virus 3. VII. Transcriptional and post transcriptional regulation of virus gene expression. Journal of Virology 24:326–342
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-65-4-721
Loading
/content/journal/jgv/10.1099/0022-1317-65-4-721
Loading

Data & Media loading...

Most cited Most Cited RSS feed