1887

Abstract

SUMMARY

Several triphosphates of 5-substituted deoxyuridine (dU), such as 5-ethyl-, 5-n-propyl-, 5-n-hexyl- and 5-isopropyldeoxyuridine triphosphates and 5-trifluorothymidine triphosphate are substrates for HeLa cell DNA polymerase (2′-deoxynucleoside-5′-triphosphate: DNA–deoxynucleotidyltransferase, EC 2.7.7.7) and for a DNA polymerase isolated from HeLa cells infected with herpes simplex virus type 2 (HSV-2) strain 75. At the concentration tested (50 ), all these analogues were incorporated more readily into DNA by the virus-coded enzyme than by DNA polymerase from the host cell. The DNA polymerase coded by HSV-2 showed an affinity for deoxythymidine triphosphate (dTTP) and the analogues studied higher than that of DNA polymerase . Analogues are preferential substrates for the viral enzyme, since they readily substitute for dTTP during synthesis . In contrast, arabinosylthymine-5′-triphosphate was readily incorporated into DNA by the host cell DNA polymerase , but inhibited the DNA polymerase specified by HSV-2.

Keyword(s): chemotherapy , DNA polymerase and HSV-2
Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-65-3-467
1984-03-01
2022-08-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/65/3/JV0650030467.html?itemId=/content/journal/jgv/10.1099/0022-1317-65-3-467&mimeType=html&fmt=ahah

References

  1. Bilello J., Kuhne J., Koch G., Gauri K. K. 1981; Alkyldeoxyuridines: transport, phosphorylation, incorporation and their biological effects. In Design of Inhibitors of Viral Functions pp 111–121 Edited by Gauri K. K. New York & London: Academic Press;
    [Google Scholar]
  2. Bollum F. J. 1975; Mammalian DNA polymerases. Progress in Nucleic Acid Research and Molecular Biology 15:109–145
    [Google Scholar]
  3. Cheng Y.-C. 1976; Deoxythymidine kinase induced in HeLa TK cells by herpes simplex virus type I and type II: substrate specificity and kinetic behaviour. Biochimica et biophysica acta 452:370–381
    [Google Scholar]
  4. Cheng Y.-C., Goz B., Neenan J. P., Ward D. C., Prusoff W. H. 1975; Selective inhibition of herpes simplex virus by 5′-amino-2′, 5′-dideoxy-5-iodouridine. Journal of Virology 15:1284–1285
    [Google Scholar]
  5. Cheng Y.-C., Hoffmann P. J., Ostrander M., Grill S., Caradonna S., Tsou J., Chen J.-C., Gallagher M. R., Flanagan T. D. 1979; Properties of herpesvirus-specific thymidine kinase, DNA polymerase and DNase and their implication in the develoµMent of specific antiherpes agents. Advances in Ophthalmology 38:173–186
    [Google Scholar]
  6. Cohen S. S. 1966; Introduction of the biochemistry of D-arabinosyl nucleosides. Progress in Nucleic Acid Research and Molecular Biology 5:1–88
    [Google Scholar]
  7. Dube D. K., Kunkel T. A., Seal G., Loeb L. A. 1979; Distinctive properties of mammalian DNA polymerase. Biochimica et biophysica acta 561:369–382
    [Google Scholar]
  8. Elion G. B., Furman P. A., Fyfe J. A., De Miranda P., Beauchkamp L., Schaeffer H. J. 1977; Selectivity of action of an antiherpetic agent, 9-(2-hydroxyethoxymethyl)guanine. Proceedings of the National Academy of Sciences, U,. S,. A 74:5716–5720
    [Google Scholar]
  9. Falke D., Moser H., Link D., Muller W. E. G. 1979; The effects of a- and β-d-arahinosyladenosine and β- arabinosylthymidine on the synthesis of HSV types 1- and 2-infected cells. Advances in Ophthalmology 38:197–203
    [Google Scholar]
  10. Gauri K. K. 1979; Anti-herpesvirus polychemotherapy. Advances in Ophthalmology 38:151–163
    [Google Scholar]
  11. Gauri K. K., Albrecht C. 1979; Relative potencies of ethyldeoxyuridine and EdU-mondphosphate in type 1 herpes keratitis in rabbits. Advances in Ophthalmology 38:64–71
    [Google Scholar]
  12. Gauri K. K., Malorny G. 1967; Chemotherapy der Herpes-infektion mit neuen 5-Alkyluracildesoxyribosiden. Archives of Pharmacology and Experimental Pathology 257:21–22
    [Google Scholar]
  13. Gauri K. K., Walter R. D. 1973; Inhibition of deoxythymidine kinase activity by the virostatic 5-ethyl-2′-deoxyuridine. Chemotherapy 18:269–273
    [Google Scholar]
  14. Gauri K. K., Pflughaupt K.-W., Muller R. 1969; Synthese und photochemische Eigenschaften von l′-(2 -Desoxy-β-d-ribofuranosyl)-(4-3H)-5-athyluracil. Zeitschrift fur Naturforschung 24:833–836
    [Google Scholar]
  15. Gauri K. K., Pressler K., Schenk K. D., Scheffler G., Rebling R. 1979; Antiviral activity of compounds modified from the imidazolidinone derivative impacarcinum. Advances in Opthalmology 38:255–266
    [Google Scholar]
  16. Gentry G., Mcgowan J., Barnett J., Nevins R., Allen G. 1979; Arabinosylthymine, a selective inhibitor of herpesvirus replication: current status of in vivo studies. Advances in Ophthalmology 38:164–172
    [Google Scholar]
  17. Heidelberger C., Parsons D. G., Remy D. C. 1964; Synthesis of 5-trifluoromethyluracil and 5-Trifluoromethyl-2′-deoxyuridine. Journal of Medicinal Chemistry 7:1–5
    [Google Scholar]
  18. Helgestrand E., Eriksson B., Johansson N. G., Lannero B., Larsson A., Misiorny A., Noren J. O., Sjoberg B., Stenberg K., Stening G., Stridh S., Oberg B., Alenius S., Philipson L. 1978; Trisodium phosphono-formate, a new antiviral compound. Science 201:819–821
    [Google Scholar]
  19. Hitzeman R. A., Price A. R. 1978; Bacillus subtilis bacteriophage PBS2-induced DNA polymerase; its purification and assay characteristics. Journal of Biological Chemistry 253:8518–8525
    [Google Scholar]
  20. Kaufman H. E., Heidelberger C. 1964; Therapeutic antiviral action of 5-trifluoromethyl-2′-deoxyuridine in herpes simplex. Science 145:585–586
    [Google Scholar]
  21. Kaufman H. E., Martola M. D., Dohlman C. 1962; Hostal use of 5-iodo-2′-deoxyuridine (IDU) in treatment of herpes simplex keratitis. Archives of Ophthalmology 38:235–239
    [Google Scholar]
  22. Keir H. M., Hay J., Morrison J. M., Subak-Sharpe H. 1966; Altered properties of deoxyribonucleic acid nucleotidyltransferase after infection of mammalian cells with herpes simplex virus. Nature, London 210:369–371
    [Google Scholar]
  23. Kelln R. A., Warren R. A. J. 1973; Studies on the biosynthesis of /J-putrescinylthymine in bacteriophage W-14-infected Pseudomonas acidovorans. Journal of Virology 12:1427–1433
    [Google Scholar]
  24. Kit S. 1976; Thymidine kinase, DNA synthesis and cancer. Molecular and Cellular Biochemistry 11:161–162
    [Google Scholar]
  25. Koch G., Kowalzick L., Hennefrund J., Scharli C., Kuhne J., Anders C., Gauri K. K. 1981; Selective alteration of membrane permeability in cells infected by herpes simplex virus. In Design of Inhibitors of Viral Functions pp 99–109 Edited by Gauri K. K. New York & London: Academic Press;
    [Google Scholar]
  26. Kowalzick L., Gauri K. K., Spadari S., Pedrali-Noy G., Kuhne J., Koch G. 1982; Differential incorporation of thymidylate analogues into DNA by DNA polymerase a and DNA polymerases specified by two herpes simplex viruses. Journal of General Virology 62:29–38
    [Google Scholar]
  27. Kuligowski T., Shugar D. 1974; 5-Alkylpyrimidine nucleosides. Preparation and properties of 5-ethyl-2 -deoxycytidine and related nucleosides. Journal of Medicinal Chemistry 17:269–273
    [Google Scholar]
  28. Lee L.-S., Cheng Y.-C. 1976; Human deoxythymidine kinase: substrate specificity and kinetic behavior of the cytoplasmic and mitochondrial isozymes derived from blast cells of acute myelocytic leukemia. Biochemistry 15:3689–3690
    [Google Scholar]
  29. Litman R. M. 1968; A deoxyribonucleic acid polymerase from Micrococcus luteus isolated on deoxyribonucleic acid-cellulose. Journal of Biological Chemistry 243:6222–6233
    [Google Scholar]
  30. Matsukage A., Ono K., Ohashi A., Takahashi T., Nakayama C., Saneyoshi M. 1978; Inhibitory effect of 1-β-d-arabinosylthymidine 5′-triphosphate and l-β-d-arabinosylcytosine 5′-triphosphate on DNA polymerases from murine cells and oncornavirus. Cancer Research 38:3076–3079
    [Google Scholar]
  31. Moffatt J. G. 1964; Synthesis of nucleoside-5′-triphosphates. Canadian Journal of Chemistry 42:599–604
    [Google Scholar]
  32. Ostrander M., Cheng Y.-C. 1977; Comparative studies of DNA polymerase induced by herpes simplex virus type I and II. Pharmacologist 19:166
    [Google Scholar]
  33. Ostrander M., Cheng Y.-C. 1980; Properties of herpes simplex virus type 1 and 2 DNA-polymerases. Biochimica et biophysica acta 609:232–245
    [Google Scholar]
  34. Pedrali-Noy G., Weissbach A. 1977; HeLa cell DNA polymerase: the effect of cycloheximide in vivo and detection of a new form of DNA polymerase. Biochimica et biophysica acta All599–604
    [Google Scholar]
  35. Powell K. L., Purifoy D. J. M. 1977; Nonstructural proteins of herpes simplex virus: purification of the induced DNA polymerase. Journal of Virology 24:618–626
    [Google Scholar]
  36. Prusoff W. H., Ward D. C. 1976; Nucleoside analogs with antiviral activity. Biochemical Pharmacology 25:1233–1239
    [Google Scholar]
  37. Ruth J. L., Cheng Y.-C. 1981; Nucleoside analogs with clinical potential in antivirus chemotherapy: the effect of several thymidine and 2′-deoxycytosine analog 5′-triphosphates on purified human (α, β) and herpes simplex virus (types 1, 2) DNA polymerase. Molecular Pharmacology 20:415–422
    [Google Scholar]
  38. Sagi J. T., Nowak R., Zumundzka B., Szemzo A., Otvos L. 1980; A study of substrate specificity of mammalian and bacterial DNA polymerases with 5-alkyl-2′-deoxyuridine-5-triphosphates. Biochimica et biophysica acta 606:196–201
    [Google Scholar]
  39. Schabel F. M. Jr 1968; The antiviral activity of 9-β-d-arabinofuranosyladenine (ara-A). Chemotherapy 13:321–338
    [Google Scholar]
  40. Schlabach A., Fridlender B., Bolden A., Weissbach A. 1971; DNA-dependent DNA polymerase from HeLa cell nuclei: template and substrate utilization. Biochemical and Biophysical Research Communications 44:879–885
    [Google Scholar]
  41. Schwobel W., Streissle G., Kiefer G. 1979; Evaluation of antiherpetic drugs by in vitro assays. Advances in Ophthalmology 38:38–42
    [Google Scholar]
  42. Spadari S., Muller R., Weissbach A. 1974; The dissimilitude of the low and high molecular weight deoxyribonucleic acid-dependent deoxyribonucleic acid polymerases of HeLa cells. Journal of Biological Chemistry 249:2991–2992
    [Google Scholar]
  43. Swierkowski M., Shugar D. 1969; A nonmutagenic thymidine analog with antiviral activity. 4-Ethyldeoxy-uridine. Journal of Medicinal Chemistry 12:533–534
    [Google Scholar]
  44. Szabolcs A., Kruppa G., Sagi J., Otvos L. 1978; Unnatural nucleosides and nucleotides: preparation of 2-14C and 4-14C labelled 5-alkyluracils and 5-alkyl-2′-deoxyuridines. Journal of Labelled Compounds and Radiopharmacology 14:713–726
    [Google Scholar]
  45. Walter R. D., Gauri K. K. 1975; 5-Ethyl-2′-deoxyuridine-5′-monophosphate inhibition of the thymidylate synthetase from Escherichia coli. Biochemical Pharmacology 24:1025–1027
    [Google Scholar]
  46. Weissbach A., Schlabach A., Fridlender B., Bolden A. 1971; DNA polymerases from human cells. Nature New Biology 231:167–170
    [Google Scholar]
  47. Weissbach A., Hong S.-C. C., Aucker J., Muller R. 1973; Characterization of herpes simplex virus-induced deoxyribonucleic acid polymerase. Journal of Biological Chemistry 248:6270–6277
    [Google Scholar]
  48. Yamada M., Brun G., Weissbach A. 1978; Synthesis of viral and host DNA in isolated chromatin from herpes simplex virus-infected HeLa cells. Journal of Virology 26:281–290
    [Google Scholar]
  49. Yamaguchi M., Matsukage A., Takahashi T. 1980; Continuous synthesis of long DNA chains by chick embryo DNA polymerase a. Nature, London 285:45–47
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-65-3-467
Loading
/content/journal/jgv/10.1099/0022-1317-65-3-467
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error