1887

Abstract

SUMMARY

Immediate-early (IE) mRNAs-4 and -5 of herpes simplex virus type 2 (HSV-2) are transcribed from the IR/TR genome regions towards the U region. Each of these spliced mRNAs has an untranslated leader sequence of 249 bases and a single intron of approximately 540 bases which are contained entirely within TR/IR sequences. The DNA sequence of the intron largely comprises tandem reiterations of three distinct short sequences. Upstream of the common 5′ mRNA termini the DNA sequence contains regions of homology with the equivalent region of HSV-1. Comparison of the polypeptides encoded by these HSV-2 mRNAs with those of HSV-1 shows blocks of conserved amino acids. The locations of the first initiator ATG triplets of these two HSV-2 mRNAs suggest that the IR/TR regions of HSV expand, by gene conversion or by equal though non-homologous crossover, to an extent determined by the functions of the DNA sequences which are duplicated or deleted as a result of the crossover. This mechanism for expansion of repeats may apply to other herpesviruses which have a genome structure similar to that of HSV.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-65-3-451
1984-03-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/jgv/65/3/JV0650030451.html?itemId=/content/journal/jgv/10.1099/0022-1317-65-3-451&mimeType=html&fmt=ahah

References

  1. Anderson K. P., Frink R. J., Devi G. B., Gaylord B. H., Costa R. H., Wagner E. K. 1981; Detailed characterisation of the mRNA mapping in the Hind III k region of the herpes simplex virus type 1 genome. Journal of Virology 37:1011–1027
    [Google Scholar]
  2. Bell G. I., Selby M. J., Rutter W. J. 1982; The highly polymorphic region near the human insulin gene is composed of tandemly repeating sequences. Nature, London 295:31–35
    [Google Scholar]
  3. Berk A. J., Sharp P. A. 1978; Structure of the adenovirus 2 early mRNAs. Cell 14:695–711
    [Google Scholar]
  4. Clements J. B., Cortini R., Wilkie N. M. 1976; Analysis of herpesvirus substructure by means of restriction endonucleases. Journal of General Virology 30:243–256
    [Google Scholar]
  5. Clements J. B., Watson R. J., Wilkie N. M. 1977; Temporal regulation of herpes simplex virus type 1 transcription: location of transcripts on the viral genome. Cell 12:275–285
    [Google Scholar]
  6. Clements J. B., Mclauchlan J., Mcgeoch D. J. 1979; Orientation of herpes simplex virus type 1 immediate early mRNAs. Nucleic Acids Research 7:77–92
    [Google Scholar]
  7. Costa R. H., Devi B. G., Anderson K. P., Gaylord B. H., Wagner E. K. 1981; Characterisation of a major late herpes simplex virus type 1 mRNA. Journal of Virology 38:483–496
    [Google Scholar]
  8. Costanzo F., Campadelli-Fiume G., Foa-Tomasi L., Cassai E. 1977; Evidence that herpes simplex virus DNA is transcribed by cellular RNA polymerase B. Journal of Virology 21:996–1001
    [Google Scholar]
  9. Davison A. J. 1983; DNA sequence of the Us component of the varicella-zoster virus genome. EMBO Journal 2: (in press)
    [Google Scholar]
  10. Davison A. I., Scott J. E. 1983; Molecular cloning of the varicella-zoster virus genome and derivation of six restriction endonuclease maps. Journal of General Virology 64:1811–1814
    [Google Scholar]
  11. Davison A. J., Wilkie N. M. 1981; Nucleotide sequences of the joint between the L and S segments of herpes simplex virus types 1 and 2. Journal of General Virology 55:315–331
    [Google Scholar]
  12. Delius H., Clements J. B. 1976; A partial denaturation map of herpes simplex virus type 1 DNA: evidence for inversions of the unique DNA regions. Journal of General Virology 33:125–133
    [Google Scholar]
  13. Dowdle W. R., Nahmias A. J., Harwell R. W., Pauls F. P. 1967; Association of antigenic type of herpesvirus hominis with site of viral recovery. Journal of Immunology 99:974–980
    [Google Scholar]
  14. Dumas A. M., Geelen J. L. M. C., Maris W., Van Der Noordaa J. 1980; Infectivity and molecular weight of varicella-zoster virus DNA. Journal of General Virology 47:233–235
    [Google Scholar]
  15. Dumas A. M., Geelen J. L. M. C., Weststrate M. W., Wertheim P., Van Der Noordaa J. 1981; Xba I, Pst I and BgZII restriction enzyme maps of the two orientations of the varicella-zoster virus genome. Journal of Virology 39:390–400
    [Google Scholar]
  16. Easton A. J. 1981 Transcription of herpes simplex virus type 2 Ph.D. thesis University of Glasgow;
    [Google Scholar]
  17. Easton A. J., Clements I. B. 1980; Temporal regulation of herpes simplex virus type 2 transcription and characterisation of virus immediate early mRNAs. Nucleic Acids Research 8:2627–2645
    [Google Scholar]
  18. Farabaugh P. I., Schmeissner U., Hofer M., Miller J. H. 1978; Genetic studies on the lac repressor. VII. On the molecular nature of spontaneous hotspots in the Zac/gene of Escherichia coli. Journal of Molecular Biology 126:847–863
    [Google Scholar]
  19. Faugeron-Fonty G., Culard F., Baldacci G., Goursot R., Prunell A., Bernardi G. 1979; The mitochondrial genome of wild-type yeast cells. VIII. The spontaneous cytoplasmic ‘petite’ mutation. Journal of Molecular Biology 134:493–537
    [Google Scholar]
  20. Frink R. J., Anderson K. P., Wagner E. K. 1981; Herpes simplex virus type 1 Hin dIII fragment I encodes spliced and complementary mRNA species. Journal of Virology 39:559–572
    [Google Scholar]
  21. Hayward G. S., Jacob R. J., Wadsworth S. C., Roizman B. 1975; Anatomy of herpes simplex virus DNA: evidence of four populations that differ in the relative orientations of their long and short components. Proceedings of the National Academy of Sciences, U,. S,. A 71:4243–4247
    [Google Scholar]
  22. Jackson J. A., Fink G. R. 1981; Gene conversion between duplicated genetic elements in yeast. Nature, London 292:306–311
    [Google Scholar]
  23. Klein H. L., Petes T. D. 1981; Intrachromosomal gene conversion in yeast. Nature, London 289:144–148
    [Google Scholar]
  24. Kozak M. 1981; Possible role of flanking nucleotides in recognition of the AUG initiator codon by eukaryotic ribosomes. Nucleic Acids Research 9:5233–5252
    [Google Scholar]
  25. Kumar A., Lindberg U. 1972; Characterisation of messenger ribonucleoprotein and messenger RNA from KB cells. Proceedings of the National Academy of Sciences, U,. S,. A 69:681–685
    [Google Scholar]
  26. Liebhaber S. A., Goosens M., Kan Y. W. 1981; Homology and concerted evolution at the al and a2 loci of human a-globin. Nature, London 290:26–29
    [Google Scholar]
  27. Lonsdale D. M., Brown S. M., Lang J., Subak-Sharpe J. H., Koprowski H., Warren K. G. 1980; Variations in herpes simplex virus isolated from human ganglia and a study of clonal variation in HSV-1. Annals of the New York Academy of Sciences 354:291–308
    [Google Scholar]
  28. Mcknight S. L. 1980; The nucleotide sequence and transcript map of the herpes simplex virus thymidine kinase gene. Nucleic Acids Research 8:5949–5964
    [Google Scholar]
  29. Mclauchlan J., Clements J. B. 1983; Organization of the herpes simplex virus type 1 transcription unit encoding two polypeptides with molecular weights of 140000 and 40000. Journal of General Virology 64:997–1006
    [Google Scholar]
  30. Marsden H. S., Lang J., Davison A. J., Hope R. G., Macdonald D. M. 1982; Genomic location and lack of phosphorylation of the HSV immediate-early polypeptide IE 12. Journal of General Virology 62:17–27
    [Google Scholar]
  31. Maxam A. M., Gilbert W. 1980; Sequencing end-labeled DNA with base-specific chemical cleavages. Methods in Enzymology 65:499–560
    [Google Scholar]
  32. Morse L. S., Buchman T. G., Roizman B., Schaffer P. A. 1977; Anatomy of HSV DNA. IX. Apparent exclusion of some parental DNA arrangements in the generation of intertypic (HSV-1 × HSV-2) recombinants. Journal of Virology 24:231–248
    [Google Scholar]
  33. Morse L. S., Pereira L., Roizman B., Schaffer P. A. 1978; Anatomy of herpes simplex virus (HSV) DNA. X. Mapping of viral genes by analysis of polypeptides and functions specified by HSV-1 × HSV-2 recombinants. Journal of Virology 26:389–410
    [Google Scholar]
  34. Mount S. M. 1982; A catalogue of splice junction sequences. Nucleic Acids Research 10:459–472
    [Google Scholar]
  35. Murchie M. J., Mcgeoch D. J. 1982; DNA sequence analysis of an immediate-early gene region of the herpes simplex virus type 1 genome (map coordinates 0-950 to 0-978). Journal of General Virology 62:1–15
    [Google Scholar]
  36. Pauls F. P., Dowdle W. R. 1967; A serological study of herpesvirus hominis strains by microneutralisation tests. Journal of Immunology 98:941–947
    [Google Scholar]
  37. Plummer G. 1964; Serological comparison of the herpesviruses. British Journal of Experimental Pathology 45:135–141
    [Google Scholar]
  38. Preston V. G., Davison A. J., Marsden H. S., Timbury M. C., Subak-Sharpe J. H., Wilkie N. M. 1978; Recombinants between herpes simplex virus type 1 and 2: analysis of genome structures and expression of immediate-early polypeptides. Journal of Virology 28:499–517
    [Google Scholar]
  39. Proudfoot N. J., Brownlee G. G. 1976; 3′ non-coding region sequences in eukaryotic mRNA. Nature, London 263:211–214
    [Google Scholar]
  40. Radding C. M. 1978; Genetic recombination: strand transfer and mismatch repair. Annual Review of Biochemistry 47:847–880
    [Google Scholar]
  41. Rixon F. J., Clements J. B. 1982; Detailed structural analysis of two spliced HSV-1 immediate-early mRNAs. Nucleic Acids Research 10:2241–2256
    [Google Scholar]
  42. Rixon F. J., Campbell M. E., Clements J. B. 1982; The immediate-early mRNA that encodes the regulatory polypeptide Vmw175 of herpes simplex virus type 1 is unspliced. EMBO Journal 1:1273–1277
    [Google Scholar]
  43. Roizman B., Carmichael S., De The G. B., Masic M., Nahmias A. J., Plowright W., Rapp F., Sheldrick P., Takahashi M., Terni M., Wolfe K. 1978; Provisional classification of herpesviruses. In Oncogenesis and Herpesviruses III part 2 pp 1079–1082 Edited by de The G., Rapp F., Henle W. Lyon: IARC Scientific Publications, No. 24;
    [Google Scholar]
  44. Roizman B., Jacob R. J., Knipe D. M., Morse L. S., Ruyechan W. T. 1979; On the structure, functional equivalence and replication of the four rearrangements of herpes simplex virus DNA. Cold Spring Harbor Symposia on Quantitative Biology 43:809–826
    [Google Scholar]
  45. Sheldrick P., Berthelot N. 1974; Inverted repetitions in the chromosome of herpes simplex virus. Cold Spring Harbor Symposia on Quantitative Biology 39:667–678
    [Google Scholar]
  46. Skare J., Summers W. C. 1977; Structure and function of herpes simplex virus genomes. II. EcoR I, Xba I and 7Hin dIII endonuclease cleavage sites on herpes simplex virus type 1 DNA. Virology 76:581–595
    [Google Scholar]
  47. Slightom J. L., Blechl A. E., Smithies O. 1980; Human fetal G, and A, -globin genes: complete nucleotide sequences suggest that DNA can be exchanged between these duplicated genes. Cell 21:627–638
    [Google Scholar]
  48. Smith G. P. 1976; Evolution of repeated DNA sequences by unequal crossover. Science 191:528–535
    [Google Scholar]
  49. Spritz R. A. 1981; Duplication/deletion polymorphism 5′ to the human jS-globin gene. Nucleic Acids Research 9:5037–5047
    [Google Scholar]
  50. Timbury M. C. 1971; Temperature-sensitive mutants of herpes simplex virus type 2. Journal of General Virology 13:373–376
    [Google Scholar]
  51. Watson R. J., Vande Woude G. F. 1982; DNA sequence of an immediate-early gene (IE mRNA-5) of herpes simplex virus type 1. Nucleic Acids Research 10:979–991
    [Google Scholar]
  52. Watson R. J., Preston C. M., Clements J. B. 1979; Separation and characterisation of herpes simplex virus type 1 immediate-early mRNAs. Journal of Virology 31:42–52
    [Google Scholar]
  53. Watson R. J., Sullivan M., Vande Woude G. F. 1981; Structures of two spliced herpes simplex virus type 1 immediate-early mRNAs which map at the junctions of the unique and reiterated regions of the virus DNA S component. Journal of Virology 37:431–444
    [Google Scholar]
  54. Watson R. J., Umene K., Enquist L. W. 1982; Reiterated sequences within the intron of an immediate-early gene of herpes simplex virus type 1. Nucleic Acids Research 9:4189–4199
    [Google Scholar]
  55. Weaver R. F., Weissmann C. 1979; Mapping of RNA by a modification of the Berk-Sharp procedure: the 5′ termini of 15S β-globin mRNA precursor and mature 10S β -globin mRNA have identical map coordinates. Nucleic Acids Research 7:1175–1193
    [Google Scholar]
  56. Whitton J. L., Rixon F. J., Easton A. L., Clements J. B. 1983; Immediate-early mRNA-2 of herpes simplex virus types 1 and 2 is unspliced: conserved sequences around the 5′ and 3′ termini correspond to transcription regulatory signals. Nucleic Acids Research 11:6271–6287
    [Google Scholar]
  57. Wilkie N. M., Cortini R. 1976; Sequence arrangements in herpes simplex virus type 1 DNA: identification of terminal fragments in restriction endonuclease digests as evidence for inversion in redundant and unique sequences. Journal of Virology 6:211–221
    [Google Scholar]
  58. Ziff E. B. 1981; Transcription and RNA processing by the DNA tumour viruses. Nature, London 287:491–499
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-65-3-451
Loading
/content/journal/jgv/10.1099/0022-1317-65-3-451
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error