Herpes Simplex and ‘The Herpes Complex’: Diverse Observations and A Unifying Hypothesis Free

Abstract

(Delivered at the 99th Ordinary Meeting of the Society for General Microbiology at Reading on 4 January 1984)*

THE ELEPHANT, OR THE FORCE OF HABIT

A tail behind, a trunk in front,

Complete the usual elephant.

A tail in front, a trunk behind,

Is what you very seldom find.

If you for specimens should hunt

With trunks behind and tails in front,

That hunt would occupy you long;

The force of habit is so strong.

(A. E. Housman, from by Laurence Housman; Jonathan Cape)

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-65-12-2077
1984-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/65/12/JV0650122077.html?itemId=/content/journal/jgv/10.1099/0022-1317-65-12-2077&mimeType=html&fmt=ahah

References

  1. Baer R., Bankier A. T., Biggin M. D., Deininger P. L., Farrell P. J., Gibson T. J., Hatfull G., Hudson G. S., Satchwell S. C., Seguin C., Tuffnell P. S., Barrell B. G. 1984; DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature, London 310:207–211
    [Google Scholar]
  2. Batterson W., Roizman B. 1983; Characterization of the herpes simplex virion-associated factor responsible for the induction of α-genes. Journal of Virology 46:371–377
    [Google Scholar]
  3. Bell D., Wilkie N. M., Subak-Sharpe J. H. 1971; Studies on arginyl transfer ribonucleic acid in herpes virus infected baby hamster kidney cells. Journal of General Virology 13:463–475
    [Google Scholar]
  4. Bennetzen J. L., Hall B. D. 1982; Codon selection in yeast. Journal of Biological Chemistry 257:3026–3031
    [Google Scholar]
  5. Ben-Porat T., Rixon F. J. 1979; Replication of her pesvirus DNA. IV. Analysis of concatemers. Virology 94:61–70
    [Google Scholar]
  6. Ben-Porat T., Kaplan A. S., Stehn B., Rubenstein A. S. 1976; Concatemeric forms of intracellular herpesvirus DNA. Virology 69:547–560
    [Google Scholar]
  7. Ben-Porat T., Rixon F. J., Blankenship M. L. 1979; Analysis of the structure of the genome of pseudorabies. Virology 95:285–294
    [Google Scholar]
  8. Ben-Porat T., Veach R. A., Ihara S. 1983; Localization of the regions of homology between the genomes of herpes simplex virus, type 1, and pseudorabies virus. Virology 127:194–204
    [Google Scholar]
  9. Ben-Porat T., Deatly A., Veach R. A., Blankenship M. L. 1984; Equalization of the inverted repeat sequences of the pseudorabies virus genome by intermolecular recombination. Virology 132:303–314
    [Google Scholar]
  10. Blair E. D., Honess R. W. 1983; DNA-binding proteins specified by herpesvirus saimiri. Journal of General Virology 64:2697–2715
    [Google Scholar]
  11. Bodemer W., Knust E., Angermuller S., Fleckenstein B. 1984; Immediate-early transcription of herpesvirus saimiri. Journal of Virology (in press)
    [Google Scholar]
  12. Brown S. M., Harland J., Subak-Sharpe J. H. 1984; Isolation of restriction endonuclease site deletion mutants of herpes simplex virus. Journal of General Virology 65:1053–1068
    [Google Scholar]
  13. Byrne B. J., Davis M. S., Yamaguchi J., Bergsma D. J., Subramanian K. N. 1983; Definition of the simian virus 40 early promoter region and demonstration of a host range bias in the enhancement effect of the simian virus 40 72 base-pair repeat. Proceedings of the National Academy of Sciences, U. S. A 80:721–725
    [Google Scholar]
  14. Cebrian J., Bucchini D., Sheldrick P. 1983; ‘Endless’ viral DNA in cells infected with channel catfish virus. Journal of Virology 46:405–412
    [Google Scholar]
  15. Chaney S. M. J., Warren K. G., Subak-Sharpe J. H. 1983; Variable restriction endonuclease sites of herpes simplex virus type 1 isolates from encephalitic, facial and genital lesions and ganglia. Journal of General Virology 64:2717–2733
    [Google Scholar]
  16. Chousterman S., Lacasa M., Sheldrick P. 1979; Physical map of channel catfish virus genome: location of sites for restriction endonucleases EcoRI, HindIII, HpaI and Xba. Journal of Virology 31:73–85
    [Google Scholar]
  17. Clements J. B., McLaughlan J., McGeoch D. J. 1979; Orientation of herpes simplex type 1 immediate-early mRNAs. Nucleic Acids Research 7:77–91
    [Google Scholar]
  18. Constanzo F. G., Campadelli-Fiume G., Foa-Tomasi L., Cassai E. 1977; Evidence that herpes simplex virus DNA is transcribed by cellular RNA polymerase B. Journal of Virology 21:996–1001
    [Google Scholar]
  19. Corden J., Wasylyk B., Buchwalder A., Sassone-Corsi P., Kedinger C., Chambon P. 1980; Promoter sequences of eukaryotic protein-coding genes. Science 209:1406–1414
    [Google Scholar]
  20. Cordingley M. G., Campbell M. E. M., Preston C. M. 1983; Functional analysis of a herpes simplex vims type 1 promoter: identification of far-upstream regulatory sequences. Nucleic Acids Research 11:2347–2365
    [Google Scholar]
  21. Craighead J. E., Kanish R. E., Almeida J. D. 1972; Nonviral microbodies with viral antigenicity produced in cytomegalovirus-infected cells. Journal of Virology 10:766–775
    [Google Scholar]
  22. Cuifo D., Hayward G. S. 1981; Tandem repeat defective from the L-segment of the HSV genome. In Herpesvirus DNA pp 107–128 Edited by Becker Y. The Hague: Martinus Nijhoff;
    [Google Scholar]
  23. Darai G., Flugel R. M., Matz B., Delius H. 1981; DNA of Tupaia herpesviruses. In Herpesvirus DNA pp 345–361 Edited by Becker Y. The Hague: Martinus Nijhoff;
    [Google Scholar]
  24. Davison A. J. 1983; DNA sequence of the Us component of the varicella-zoster virus genome. EMBO Journal 2:2203–2210
    [Google Scholar]
  25. Davison A. J., Scott J. E. 1983; Molecular cloning of the varicella-zoster virus genome and derivation of six restriction endonuclease maps. Journal of General Virology 64:1811–1814
    [Google Scholar]
  26. Davison A. J., Wilkie N. M. 1981; Nucleotide sequences of the joint between the L and S segments of herpes simplex virus types 1 and 2. Journal of General Virology 55:315–331
    [Google Scholar]
  27. Davison A. J., Wilkie N. M. 1983a; Inversion of the two segments of the herpes simplex virus genome in inter-typic recombinants. Journal of General Virology 64:1–18
    [Google Scholar]
  28. Davison A. J., Wilkie N. M. 1983b; Location and orientation of homologous sequences in the genomes of five herpesviruses. Journal of General Virology 64:1927–1942
    [Google Scholar]
  29. Davison A. J., Marsden H. S., Wilkie N. M. 1981; One functional copy of the long terminal repeat gene specifying the immediate-early polypeptide IE 110 suffices for a productive infection of human foetal lung cells by herpes simplex virus. Journal of General Virology 55:179–191
    [Google Scholar]
  30. Davison M.-J., Preston V. G., McGeoch D. J. 1984; Determination of the sequence alteration in the DNA of the herpes simplex virus type 1 temperature-sensitive mutant ts K. Journal of General Virology 65:859–863
    [Google Scholar]
  31. De Marchi J. M. 1981; Human cytomegalovirus DNA: restriction enzyme cleavage maps and map locations for immediate early, early and late RNAs. Virology 114:23–28
    [Google Scholar]
  32. Dennis D., Smiley J. R. 1984; Transactivation of a late herpes simplex virus promoter. Molecular and Cellular Biology 4:544–551
    [Google Scholar]
  33. Devilliers E.-M. 1979; Purification of the JS-3 isolate of herpesvirusovis (bovid herpesvirus 4) and some properties of its DNA. Journal of Virology 32:705–709
    [Google Scholar]
  34. Dixon R. A. F., Schaffer P. A. 1980; Fine-structure mapping and functional analysis of temperature-sensitive mutants in the gene encoding the herpes simplex virus type 1 immediate early protein VP 175. Journal of Virology 36:189–203
    [Google Scholar]
  35. Drake J. W. 1974; The role of mutation in microbial evolution. In Evolution in the Microbial World, 24th Symposium of the Society for General Microbiology pp 41–58 Edited by Carlile M. J., Skehel J. J. Cambridge: Cambridge University Press;
    [Google Scholar]
  36. Draper K. G., Frink R. J., Wagner E. K. 1982; Detailed characterisation of an apparently unspliced β herpes simplex virus type 1 gene mapping in the interior of another. Journal of Virology 43:1123–1128
    [Google Scholar]
  37. Dutia B. M. 1983; Ribonucleotide reductase induced by herpes simplex virus hasa virus-specified constituent. Journal of General Virology 64:513–521
    [Google Scholar]
  38. Ebeling A., Keil G. M., Knust E., Koszinowski U. H. 1983d; Molecular cloning and physical mapping of murine cytomegalovirus DNA. Journal of Virology 47:421–433
    [Google Scholar]
  39. Ebeling A., Keil G., Nowak B., Fleckenstein B., Berthelot N., Sheldrick P. 1983b; Genome structure and virion polypeptides of the primate herpesviruses herpesvirus aotus types 1 and 3: comparison with human cytomegalovirus. Journal of Virology 45:715–726
    [Google Scholar]
  40. Elton R. A. 1973a; The relationship of DNA base composition and individual protein composition in microorganisms. Journal of Molecular Evolution 2:263–276
    [Google Scholar]
  41. Elton R. A. 1973b; Doublet frequencies in the DNA of genetic code limit organisms. Journal of Molecular Evolution 2:293–302
    [Google Scholar]
  42. Engels M., Gelderblom H., Darai G., Ludwig H. 1983; Goat herpesviruses: biological and physicochemical properties. Journal of General Virology 64:2237–2247
    [Google Scholar]
  43. Everett R. D. 1983; DNA sequence elements required for regulated expression of the HSV-1 glycoprotein D gene lie within 83 bp of the RNA capsites. Nucleic Acids Research 11:6647–6666
    [Google Scholar]
  44. Everett R. D., Baty D., Chambon P. 1983; The repeated GC-rich motifs upstream from the TATA box are important elements of the SV40 early promoter. Nucleic Acids Research 11:2447–2464
    [Google Scholar]
  45. Feldman L., Rixon F. J., Jean J.-H., Ben-Porat T., Kaplan A. S. 1979; Transcription of the genome of pseudorabies virus (a herpesvirus) is strictly controlled. Virology 97:316–327
    [Google Scholar]
  46. Feldman L. T., Imperiale M. J., Nevins J. R. 1982; Activation of early adenovirus transcription by the herpesvirus immediate early gene: evidence for a common cellular control factor. Proceedings of the National Academy of Sciences, U. S. A 79:4952–4956
    [Google Scholar]
  47. Felsenfeld A. D., Schmidt N. J. 1977; Antigenic relationships among several simian varicella-like viruses and varicella-zoster virus. Infection and Immunity 15:807–812
    [Google Scholar]
  48. Fersht A. R., Knill-Jones J. W. 1983; Fidelity of replication of bacteriophage ϕX174 DNA in vitro and in vivo. Journal of Molecular Biology 165:633–654
    [Google Scholar]
  49. Field H. J., Anderson J. R., Wildy P. 1982; Atypical patterns of neural infection produced in mice by drug-resistant strains of herpes simplex virus. Journal of General Virology 59:91–99
    [Google Scholar]
  50. Fitzgerald M., Shenk T. 1981; The sequence 5′-AAUAAA-3′ forms part of the recognition site for polyadenylation of late SV40 mRNAs. Cell 24:251–260
    [Google Scholar]
  51. Fleckenstein B., Desrosiers R. C. 1982; Herpesvirus saimiri and herpesvirus ateles. In The Herpesviruses vol 1: pp 253–332 Edited by Roizman B. New York & London: Plenum Press;
    [Google Scholar]
  52. Frenkel N. 1981; Defective interfering herpesviruses. In The Human Herpesviruses pp 91–120 Edited by Nahmias A., Dowdle W. R., Schinazi R. F. New York: Elsevier;
    [Google Scholar]
  53. Frenkel N., Jacob R. J., Honess R. W., Hayward G. S., Locker H., Roizman B. 1975; Anatomy of herpes simplex virus DNA. III. Characterization of defective DNA molecules and biological properties of virus populations containing them. Journal of Virology 16:153–167
    [Google Scholar]
  54. Frenkel N., Locker H., Vlazny D. A. 1980; Studies of defective herpes simplex viruses. Annals of the New York Academy of Sciences 354:347–370
    [Google Scholar]
  55. Frink R. J., Eisenberg R., Cohen G., Wagner E. K. 1983; Detailed analysis of the portion of the herpes simplex virus type 2 genome encoding glycoprotein C. Journal of Virology 45:634–647
    [Google Scholar]
  56. Garel J. P., Hentzen D., Daillie J. 1974; Codon responses of tRNAAla, tRNAGIy and tRNASer from the posterior part of the silkgland of Bombyx mori L. FEBS Letters 39:359–363
    [Google Scholar]
  57. Gatlin L. 1972; Information Theory and the Living System. New York & London: Columbia University Press;
    [Google Scholar]
  58. Gibbs C. P., Nazerian K., Velicer L. F., Kung H.-J. 1984; Extensive homology exists between Marek’s disease herpesvirus and its vaccine virus, herpesvirusof turkeys. Proceedings of the National Academy of Sciences, U. S. A 81:3365–3369
    [Google Scholar]
  59. Gibson T., Stockwell P., Ginsburg M., Barrell B. 1984; Homology between two EBV early genes and HSV ribonucleotide reductase and 38K genes. Nucleic Acids Research 12:5087–5099
    [Google Scholar]
  60. Gibson W. 1981; Structural and nonstructural proteins of strain Colburn cytomegalovirus. Virology 111:516–537
    [Google Scholar]
  61. Gibson W., Murphy T., Roby C. 1981; Cytomegalovirus-infected cells contain a DNA-binding protein. Virology 111:251–262
    [Google Scholar]
  62. Gouy M., Gautier C. 1982; Codon usage in bacteria: correlation with gene expressivity. Nucleic Acids Research 10:7055–7074
    [Google Scholar]
  63. Grantham R., Gautier C., Gouy M., Mercier R., Pave A. 1980; Codon catalogue usage and the genome hypothesis. Nucleic Acids Research 8:r49–r62
    [Google Scholar]
  64. Grantham R., Gautier C., Gouy M., Jacobzone M., Mercier R. 1981; Codon catalogue usage is a genome strategy modulated for gene expressivity. Nucleic Acids Research 9:r43–r74
    [Google Scholar]
  65. Green M. R., Treisman R., Maniatis T. 1983; Transcriptional activation of cloned β-globin genes by viral immediate-early gene products. Cell 35:137–148
    [Google Scholar]
  66. Grosjean H., Fiers W. 1982; Preferential codon usage in prokaryotic genes: the optimal codon-anticodon interaction energy and the selective codon usage in efficiently expressed genes. Gene 18:199–209
    [Google Scholar]
  67. Grosse F., Krauss G., Knill-Jones J. W., Fersht A. R. 1983; Accuracy of DNA polymerase-α in copying natural DNA. EMBO Journal 2:1515–1519
    [Google Scholar]
  68. Hall J. D., Coen D. M., Fisher B. L., Weisslitz M., Randall S., Almy R. E., Gelep P. T., Schaffer P. A. 1984; Generation of genetic diversity in herpes simplex virus: an antimutator phenotype maps to the DNA polymerase locus. Virology 132:26–37
    [Google Scholar]
  69. Harbour D. A., Caunt A. E. 1979; The serological relationship of varicella-zoster virus to other primate herpesviruses. Journal of General Virology 45:469–477
    [Google Scholar]
  70. Hayward G. S., Frenkel N., Roizman B. 1975; Anatomy of herpes simplex virus DNA. Strain differences and heterogeneity of the location of restriction endonuclease cleavage sites. Proceedings of the National Academy of Sciences U. S. A 72:1768–1772
    [Google Scholar]
  71. Henry B. E., Robinson R. A., Dauenhauer S. A., Atherton S. S., Hayward G. S., O’Callaghan D. J. 1981; Structure of the genome of equine herpesvirus type 1. Virology 115:97–114
    [Google Scholar]
  72. Holland L. E., Sandri-Goldin R. M., Goldin A. L., Glorioso J. C., Levine M. 1984; Transcriptional and genetic analysis of the herpes simplex virus type 1 genome: co-ordinates 0.29 to 0.45. Journal of Virology 49:947–959
    [Google Scholar]
  73. Honess R. W. 1981; Complementation between phosphonoacetic acid-resistant and -sensitive variants of herpes simplex viruses: evidence for an oligomeric protein with restricted intracellular diffusion as the determinant of resistance and sensitivity. Journal of General Virology 57:297–306
    [Google Scholar]
  74. Honess R. W., Roizman B. 1973; Proteins specified by herpes simplex virus. XI. Identification and relative molar rates of synthesis of structural and nonstructural herpes virus polypeptides in the infected cell. Journal of Virology 12:1347–1365
    [Google Scholar]
  75. Honess R. W., Roizman B. 1974; Regulation of herpesvirus macromolecular synthesis. I. Cascade regulation of the synthesis of three groups of viral proteins. Journal of Virology 14:8–19
    [Google Scholar]
  76. Honess R. W., Roizman B. 1975; Regulation of herpesvirus macromolecular synthesis: sequential transition of polypeptide synthesis requires functional viral polypeptides. Proceedings of the National Academy of Sciences, U. S. A 72:1276–1280
    [Google Scholar]
  77. Honess R. W., Watson D. H. 1911a; Herpes simplex virus resistance and sensitivity to phosphonoacetic acid. Journal of Virology 21:584–600
    [Google Scholar]
  78. Honess R. W., Watson D. H. 1977b; Unity and diversity in the herpesviruses. Journal of General Virology 37:15–37
    [Google Scholar]
  79. Honess R. W., Buchan A., Halliburton I. W., Watson D. H. 1980; Recombination and linkage between structural and regulatory genes of herpes simplex virus type 1: study of the functional organization of the genome. Journal of Virology 34:716–742
    [Google Scholar]
  80. Honess R. W., O’Hare P., Young D. 1982; Comparison of thymidine kinase activities induced in cells productively infected with herpesvirus saimiri and herpes simplex virus. Journal of General Virology 58:237–249
    [Google Scholar]
  81. Honess R. W., Purifoy D. J. M., Young D., Gopal R., Cammack N., O’Hare P. 1984; Single mutations at many sites within the DNA polymerase locus of herpes simplex viruses can confer hypersensitivity to aphidicolin and resistance to phosphonoacetic acid. Journal of General Virology 65:1–17
    [Google Scholar]
  82. Huang E.-S., Kilpatrick B., Lakeman A., Alford C. A. 1978; Genetic analyses of a cytomegalovirus-like agent isolated from human brain. Journal of Virology 26:718–723
    [Google Scholar]
  83. Ihara S., Feldman L., Watanabe S., Ben-Porat T. 1983; Characterization of the immediate-early functions of pseudorabies virus. Virology 131:437–454
    [Google Scholar]
  84. Ikemura T. 1981; Correlation between the abundance of Escherichia coli transfer RN As and the occurrence of the respective codons in its protein genes: a proposal for a synonymous codon choice that is optimal for the E. coli translational system. Journal of Molecular Biology 151:389–409
    [Google Scholar]
  85. Imperiale M. J., Feldman L. T., Nevins J. R. 1983; Activation of gene expression by adenovirus and herpesvirus regulatory genes acting in trans and by a cis-acting adenovirus enhancer element. Cell 35:127–136
    [Google Scholar]
  86. Irmiere A., Gibson W. 1983; Isolation and characterization of a noninfectious virion-like particle released from cells infected with human strains of cytomegalovirus. Virology 130:118–133
    [Google Scholar]
  87. Isom H. C., Gao M., Wigdahl B. 1984; Characterization of guinea pig cytomegalovirus DNA. Journal of Virology 49:426–436
    [Google Scholar]
  88. Jacob R. J., Morse L. S., Roizman B. 1979; Anatomy of herpes simplex virus DNA. XII. Accumulation of head-to-tail concatemers in nuclei of infected cells and their role in the generation of the four isomeric arrangements of viral DNA. Journal of Virology 29:448–457
    [Google Scholar]
  89. Jamieson A. T., Bjursell G. 1976; Deoxyribonucleoside triphosphate pools in herpes simplex type 1 infected cells. Journal of General Virology 31:101–113
    [Google Scholar]
  90. Jeang K.-T., Hayward G. S. 1983; A cytomegalovirus DNA sequence containing tracts of tandemly repeated CA-dinucleotides hybridizes to highly repetitive dispersed elements in mammalian cell genomes. Molecular and Cellular Biology 3:1389–1402
    [Google Scholar]
  91. Johnson D. R., Klein G., Falk L. 1980a; Interaction of herpesvirus ateles and herpesvirus saimiri with primate lymphocytes. I. Selective adsorption of virus by lymphoid cells. Intervirology 13:21–27
    [Google Scholar]
  92. Johnson D. R., Ernberg I., Klein G. 1980b; Interaction of herpesvirus ateles with marmoset lymphocytes. II. Identification of target cell population and stimulation of DNA synthesis after infection in vitro. Intervirology 14:202–207
    [Google Scholar]
  93. Kaerner H. C., Maichle I. B., Ott A., Schröder C. H. 1979; Origin of two different classes of defective HSV-1 Angelotti DNA. Nucleic Acids Research 6:1467–1478
    [Google Scholar]
  94. Kaerner H. C., Ott-Hartmann A., Schatten R., Schröder C. H., Gray C. P. 1981; Amplification of a short nucleotide sequence in the repeat units of defective herpes simplex virus type 1 Angelotti DNA. Journal of Virology 39:75–81
    [Google Scholar]
  95. Kaerner H. C., Schröder C. H., Ott-Hartmann A., Kümel G., Kirschner H. 1983; Genetic variability of herpes simplex virus: development of a pathogenic variant during passaging of a non-pathogenic herpes simplex virus type 1 virus strain in mouse brain. Journal of Virology 46:83–93
    [Google Scholar]
  96. Kieff E. D., Dambaugh T., Hummel M., Heller M. 1983; Epstein-Barr virus transformation and replication. In Advances in Viral Oncology vol 3: pp 133–182 Edited by Klein G. New York: Raven Press;
    [Google Scholar]
  97. King W., Dambaugh T., Heller M., Dowling J., Kieff E. 1982; Epstein-Barr virus DNA. XII. A variable region of the Epstein-Barr virus genome is included in the P3HR-1 deletion. Journal of Virology 43:979–986
    [Google Scholar]
  98. Kobayashi I., Stahl M. M., Leach D., Stahl F. W. 1983; The interaction of cos with Chi is separable from DNA packaging in rec/l-recBC-mediated recombination of bacteriophage lambda. Genetics 104:549–570
    [Google Scholar]
  99. Koch A. L. 1971a; The adaptive responses of Escherichia coli to a feast and famine existence. Advances in Microbial Physiology 6:147–217
    [Google Scholar]
  100. Koch R. E. 1971b; The influence of neighbouring base pairs upon base pair substitution mutation rates. Proceedings of the National Academy of Sciences U. S. A 68:773–776
    [Google Scholar]
  101. Konigsberg W., Godson G. N. 1983; Evidence for the use of rare codons in the dnaG gene and other regulatory genes of Escherichia coli. Proceedings of the National Academy of Sciences, U.S.A 80:687–691
    [Google Scholar]
  102. Koomey J. M., Mulder C., Burghoff R. L., Fleckenstein B., Desrosiers R. C. 1984; Deletion of DNA sequences in a nononcogenic variant of herpesvirus sairairi. Journal of Virology 50:662–665
    [Google Scholar]
  103. Kubitschek H. E. 1974; Operation of selection pressure on microbial populations. In Evolution in the Microbial World, 24th Symposiumofthe Societyfor General Microbiology pp 105–130 Edited by Carlile M. J., Skehel J. J. Cambridge: Cambridge University Press;
    [Google Scholar]
  104. Ladin B. F., Blankenship M. L., BenPorat T. 1980; Replication of herpesvirus DNA. V. Maturation of concatemeric DN A of pseudorabies virus to genome length is related to capsid formation. Journal of Virology 33:1151–1164
    [Google Scholar]
  105. Lafemina R. L., Hayward G. S. 1980; Structural organization of the DNA molecules from human cytomegalovirus. In Animal Virus Genetics, 1CN-UCLA Symposia on Molecular Biology and Medicine vol 18: pp 3955 Edited by Fields B., Jaenisch R., Fox C. F. New York: Academic Press;
    [Google Scholar]
  106. Lafemina R. L., Hayward G. S. 1983; Replicative forms of human cytomegalovirus DNA with joined termini are found in permissively infected human cells but not in non-permissive Balb/c-3T3 mouse cells. Journal of General Virology 64:373–389
    [Google Scholar]
  107. Laimins L. A., Khoury G., Gorman C., Howard B., Gruss P. 1982; Host specific activation of transcription by tandem repeats from simian virus 40 and Moloney murine sarcoma virus. Proceedings of the National Academy of Sciences, U. S. A 79:6453–6457
    [Google Scholar]
  108. Lang J. C., Spandidos D. A., Wilkie N. M. 1984; Transcriptional regulation of a herpes simplex virus immediate early gene is mediated through an enhancer-type sequence. EMBO Journal 3:389–395
    [Google Scholar]
  109. Larder B. A., Cheng Y. C., Darby G. 1983; Characterization of abnormal thymidine kinases induced by drug-resistant strains of herpes simplex virus type 1. Journal of General Virology 64:523–532
    [Google Scholar]
  110. Leiden J. M., Buttyan R., Spear P. G. 1976; Herpes simplex virus gene expression in transformed cells. I. Regulation of the viral thymidine kinase gene in transformed L-cells by products of super infecting virus. Journal of Virology 20:413–424
    [Google Scholar]
  111. Linney E., Davis B., Overhauser J., Chao E., Fan H. 1984; Non-function of a Moloney murine leukaemia virus regulatory sequence in F9 embryonal carcinoma cells. Nature, London 308:470–472
    [Google Scholar]
  112. Locker H., Frenkel N. 1979; BamHI, KpnI and SalI restriction enzyme maps of the DNAs of herpes simplex virus strains Justin and F: occurrence of heterogeneities in defined regions of the viral DNA. Journal of Virology 32:429–441
    [Google Scholar]
  113. Lomniczi B., Blankenship M. L., BenPorat T. 1984; Deletions in the genomes of pseudorabies virus vaccine strains and existence of four isomers of the genomes. Journal of Virology 49:970–979
    [Google Scholar]
  114. McDonough S. H., Spector D. H. 1983; Transcription in human fibroblasts permissively infected by human cytomegalovirus strain AD169. Virology 125:31–46
    [Google Scholar]
  115. McGeoch D. 1984; The nature of animal virus genetic material. In The Microbe 1984, Part 1, Viruses, 36th Symposium of the Society for General Microbiology pp 75–107 Edited by Mahy B. W. J., Pattison J. R. Cambridge: Cambridge University Press;
    [Google Scholar]
  116. Mackem S., Roizman B. 1980; Regulation of herpesvirus macromolecular synthesis: transcription-initiation sites and domains of a genes. Proceedings of the National Academy of Sciences, U. S. A 76:4117–4121
    [Google Scholar]
  117. Mackem S., Roizman B. 1982a; Differentiation between a-promoter and regulator regions of herpes simplex virus type 1: the functional domains and sequence of a movable a-regulator. Proceedings of the National Academy of Sciences, U.S.A 79:4917–4921
    [Google Scholar]
  118. Mackem S., Roizman B. 1982b; Structural features of the herpes simplex virus a gene 4, 0, and 27 promoter-regulatory sequences which confer a regulation on chimeric thymidine kinase genes. Journal of Virology 44:939–949
    [Google Scholar]
  119. Marks J. R., Mercer J. A., Spector D. H. 1983; Transcription in mouse embryo cells permissively infected by murine cytomegalovirus. Virology 131:247–254
    [Google Scholar]
  120. Mayfield J. E., Good P. J., Vanoort H. J., Campbell A. R., Reed D. E. 1983; Cloning and cleavage site mapping of DNA from bovine herpesvirus 1 (Cooper strain). Journal of Virology 47:259–264
    [Google Scholar]
  121. McKnight S. L. 1980; The nucleotide sequence and transcript map of the herpes simplex virus thymidine kinase gene. Nucleic Acids Research 8:5949–5964
    [Google Scholar]
  122. McKnight S. L., Kingsbury R. 1982; Transcriptional control sequences of a eukaryotic protein-coding gene. Science 217:316–324
    [Google Scholar]
  123. McLaughlan J., Clements J. B. 1983; Organization of the herpes simplex virus type 1 transcription unit encoding two early proteins with molecular weights of 140000 and 40000. Journal of General Virology 64:997–1006
    [Google Scholar]
  124. Meijer H., Dormans P. H. J., Geelen J. L. M. C., Van Boven C. P. A. 1984; Rat cytomegalovirus: studies on the viral genome and the proteins of virions and nucleocapsids. Journal of General Virology 65:681–695
    [Google Scholar]
  125. Mercer J. A., Marks J. R., Spector D. H. 1983; Molecular cloning and restriction endonuclease mapping of the murine cytomegalovirus genome (Smith strain). Virology 129:94–106
    [Google Scholar]
  126. Minson A. C., Bell S. E., Bastow K. 1982; Correlation of the virus sequence content and biological properties of cells carrying the herpes simplex virus type 2 thymidine kinase gene. Journal of General Virology 58:127–138
    [Google Scholar]
  127. Mocarski E. S., Roizman B. 1981; Site specific inversion sequence of the herpes simplex virus genome: domain and structural features. Proceedings of the National Academy of Sciences, U.S.A 78:7047–7051
    [Google Scholar]
  128. Mocarski E. S., Roizman B. 1982a; Herpesvirus dependent amplification and inversion of cell-associated viral thymidine kinase gene flanked by viral sequences and linked to an origin of viral DNA replication. Proceedings of the National Academy of Sciences, U.S.A 79:5626–5630
    [Google Scholar]
  129. Mocarski E. S., Roizman B. 1982b; Structure and role of the herpes simplex virus DNA termini in inversion, circularization and generation of virion DNA. CelI 31:89–97
    [Google Scholar]
  130. Mocarski E. S., Post L. E., Roizman B. 1980; Molecular engineering of the herpes simplex virus genome: insertion of a second L-S junction into the genome causes additional inversions. Cell 22:243–255
    [Google Scholar]
  131. Morgan D. G. 1977; Observations on the antigenic relationships between Epstein-Barr virus and herpesvirus saimiri. Journal of General Virology 36:281–287
    [Google Scholar]
  132. Morgan D. G., Epstein M. A. 1977; Sequential immunofluorescence and infectivity studies on the replication of herpesvirus saimiri in owl monkey kidney cells. Journal of General Virology 34:61–72
    [Google Scholar]
  133. Morris V. L., Wagner E. K., Roizman B. 1970; RNA synthesis in cells infected with herpes simplex virus. III. Absence of virus specified arginyl- and seryl-tRNA in infected HEp-2 cells. Journal of Molecular Biology 52:247–263
    [Google Scholar]
  134. Murchie M.-J., McGeoch D. I. 1982; DNA sequence analysis of an immediate-early gene region of the herpes simplex virus type 1 genome (map coordinates 0.950 to 0.978). Journal of General Virology 62:1–15
    [Google Scholar]
  135. Nishimura S. 1979; Modified nucleosides in tRNA. In Transfer RNA: Structure, Properties and Recognition pp 59–79 Edited by Schimmel P. R. Soil D., Abelson J. N. New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  136. O’Hare P., Honess R. W. 1983a; Identification of a subset of herpesvirus saimiri polypeptides synthesized in the absence of virus DNA replication. Journal of Virology 46:279–283
    [Google Scholar]
  137. O’Hare P., Honess R. W. 1983b; Evidence for a herpesvirus saimiri-specified DNA polymerase activity which is aphidicolin-resistant and phosphonoacetate-sensitive. Journal of General Virology 64:1013–1024
    [Google Scholar]
  138. Park M., Lonsdale D. M., Timbury M. C., Subak-Sharpe J. H., Macnab J. C. M. 1980; Genetic retrieval of viral genome sequences from herpes simplex virus transformed cells. Nature, London 285:412–415
    [Google Scholar]
  139. Poffenberger K. L., Tabares E., Roizman B. 1983; Characterization of a viable, non-inverting herpes simplex virus 1 genome derived by insertion and deletion of sequences at the junction of L and S. Proceedings of the National Academy of Sciences, U. S. A 80:2690–2694
    [Google Scholar]
  140. Post L. E., Roizman B. 1981; A generalized technique for deletion of specific genes in large genomes: gene 22 of herpes simplex virus type 1 is not essential for growth. Cell 25:227–232
    [Google Scholar]
  141. Post L. E., Stycharz G. D., Nomura M., Lewis H., Dennis P. P. 1979; Nucleotide sequence of the ribosomal protein gene cluster adjacent to the gene for RNA polymerase subunit β in Escherichia coli. Proceedings of the National Academy of Sciences, U.S.A 76:1697–1701
    [Google Scholar]
  142. Preston C. M. 1979; Control of herpes simplex virus type 1 mRNA synthesis in cells infected with wild type virus or the temperature-sensitive mutant txK. Journal of Virology 29:275–285
    [Google Scholar]
  143. Preston C. M., Cordingley M. G., Stow N. D. 1984; Analysis of DNA sequences which regulate the transcription of a herpes simplex virus immediate early gene. Journal of Virology 50:708–716
    [Google Scholar]
  144. Preston V. G. 1981; Fine-structure mapping of herpes simplex virus type 1 temperature-sensitive mutations within the short repeat region of the genome. Journal of Virology 39:150–161
    [Google Scholar]
  145. Randall R. E., Honess R. W., O’Hare P. 1983; Proteins specified by herpesvirus saimiri: identification and properties of virus-specific polypeptides in productively infected cells. Journal of General Virology 64:19–35
    [Google Scholar]
  146. Randall R. E., Newman C., Honess R. W. 1984; A single major immediate-early virus gene product is synthesized in cells productively infected with herpesvirus saimiri. Journal of General Virology 65:1215–1219
    [Google Scholar]
  147. Ritchie D. A., Timbury M. 1980; Herpes viruses and latency: possible relevance of the structure of the viral genome. FEMS Microbiology Letters 9:67–72
    [Google Scholar]
  148. Rixon F. J., McGeoch D. J. 1984; A 3′ co terminal family of mRNAs from the herpes simplex virus type 1 short region: two over lapping reading frames encode unrelated polypeptides one of which has a highly re-iterated amino acid sequence. Nucleic Acids Research 12:2473–2487
    [Google Scholar]
  149. Roizman B. 1979; The organization of the herpes simplex virus genome. Annual Review of Genetics 13:25–57
    [Google Scholar]
  150. Roizman B. 1980; Genome variation and evolution among herpesviruses. Annals of the New York Academy of Sciences 354:472–483
    [Google Scholar]
  151. Roizman B. 1982; The family Herpesviridae: general description, taxonomy, and classification. In The Herpesviruses vol 1: pp 1–23 Edited by Roizman B. New York & London: Plenum Press;
    [Google Scholar]
  152. Roizman B., Furlong D. 1974; The replication of herpesviruses. In Comprehensive Virology vol 3: pp 229–403 Edited by Fraenkel-Conrat H., Wagner R. R. New York & London: Plenum Press;
    [Google Scholar]
  153. Roizman B., Jacob R. J., Knipe D. M., Morse L. S., Ruyechan W. T. 1979; On the structure, functional equivalence, and replication of the four arrangements of herpes simplex virus DNA. Cold Spring Harbor Symposia on Quantitative Biology 43:809–826
    [Google Scholar]
  154. Rüger R., Daniel M. D., Fleckenstein B. 1980; Herpesvirus aotus type2, a virus related to the oncogenic herpesviruses of New World primates. Zentralblatt für Bakteriologie, Parasitenkunde, Infections krankheiten und Hygiene Abt. I Originate Reiche A 246:441
    [Google Scholar]
  155. Sandri-Goldin R. M., Goldin A. L., Holland L. E., Glorioso J. C., Levine M. 1983; Expression of herpes simplex virus β and γ genes integrated in mammalian cells and their induction by an α-gene product. Molecular and Cellular Biology 3:2028–2044
    [Google Scholar]
  156. Scriba M. 1977; Extraneural localization of herpes simplex virus in latently infected guinea pigs. Nature, London 267:529–531
    [Google Scholar]
  157. Sheldrick P., Berthelot N. 1974; Inverted repetitions in the chromosome of herpes simplex virus. Cold Spring Harbor Symposia on Quantitative Biology 39:667–679
    [Google Scholar]
  158. Shiraki K., Okuno T., Yamanishi K., Takahashi M. 1982; Polypeptides of varicella-zoster virus (VZV) and immunological relationship of VZV and herpes simplex virus. Journal of General Virology 61:255–269
    [Google Scholar]
  159. Sixbey J. W., Nedrud J. G., Raab-Traub N., Hanes R. A., Pagano J. S. 1984; Epstein-Barr virus replication in oropharyngeal epithelium cells. New England Journal of Medicine 310:1225–1230
    [Google Scholar]
  160. Smiley J. R., Fong B. S., Leung W. C. 1981; Construction of a double-jointed herpes simplex viral DNA molecule: inverted repeats are required for segment inversion, and direct repeats promote deletions. Virology 113:345–362
    [Google Scholar]
  161. Smiley J. R., Swan H., Pater M. M., Pater A., Halpern M. E. 1983; Positive control of the herpes simplex virus thymidine kinase gene requires upstream DNA sequences. Journal of Virology 47:301–310
    [Google Scholar]
  162. Smith D. W. E. 1975; Reticulocyte transfer RN A and hemoglobin synthesis: transfer RNA availability may regulate hemoglobin synthesis in developing blood cells. Science 190:529–535
    [Google Scholar]
  163. Smith G. P. 1976; Evolution of repeated DNA sequences by unequal crossover. Science 191:528–535
    [Google Scholar]
  164. Spaete R. R., Frenkel N. 1982; The herpes simplex virus amplicon: a new eukaryotic defective virus cloning-amplifying vector. Cell 30:295–304
    [Google Scholar]
  165. Spandidos D. A., Wilkie N. M. 1983; Host-specificities of papillomavirus, Moloney murine sarcoma virus and simian virus 40 enhancer sequences. EMBO Journal 2:1193–1199
    [Google Scholar]
  166. Spear P. G., Roizman B. 1980; Herpes simplex viruses. In Molecular Biology of Tumor Viruses, 2ndedn. Part 2, DNA Tumor Viruses pp 615–745 Edited by Tooze J. New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  167. Spicer E. K., Konigsberg W. H. 1984; Organization and structure of four T4 genes coding for DNA replication proteins. In Bacteriophage T4 pp 291–301 Edited by Matthews C. K., Kutter E. M., Mosig G., Perget P. B. Washington, D. C.: American Society for Microbiology;
    [Google Scholar]
  168. Sprague K. U., Hagenbuchle O., Zuniga M. C. 1977; The nucleotide sequence of two silk gland alanine tRNAs: implications for fibroin synthesis and for initiator tRNA structure. Cell 11:561–570
    [Google Scholar]
  169. Stenberg R. M., Thomsen D. R., Stinski M. F. 1984; Structural analysis of the major immediate early gene of human cytomegalovirus. Journal of Virology 49:190–199
    [Google Scholar]
  170. Sternberg N., Hamilton D., Austin S., Yarmolinsky M., Hoess R. 1981; Site-specific recombination and its role in the life cycle of bacteriophage PI. Cold Spring Harbor Symposia on Quantitative Biology 45:297–309
    [Google Scholar]
  171. Stinski M. F., Thomsen D. R., Stenberg R. M., Goldstein L. C. 1983; Organization and expression of the immediate early genes of human cytomegalovirus. Journal of Virology 46:1–14
    [Google Scholar]
  172. Storz J., Ehlers B., Todd W. J., Ludwig H. 1984; Bovine cytomegaloviruses: identification and differential properties. Journal of General Virology 65:697–706
    [Google Scholar]
  173. Stow N. D. 1982; Localization of an origin of DNA replication within the TRS/IRS repeated region of the herpes simplex virus type 1 genome. EMBO Journal 1:863–867
    [Google Scholar]
  174. Stow N. D., McMonagle E. 1983; Characterization of the TRS/IRS origin of DNA replication of herpes simplex virus type 1. Virology 130:427–438
    [Google Scholar]
  175. Stow N. D., McMoagle E. C., Davison A. J. 1983; Fragments from both termini of the herpes simplex virus type 1 genome contain signals required for the encapsidation of viral DNA. Nucleic Acids Research 11:8205–8220
    [Google Scholar]
  176. Streheler B. L., Hendley D. D., Hirsch G. P. 1967; Evidence on a codon restriction hypothesis of cellular differentiation: multiplicity of mammalian leucyl-sRNA-specific synthetases and tissue specific deficiency in an alanyl-sRNA synthetase. Proceedings of the National Academy of Sciences, U.S.A 57:1751–1758
    [Google Scholar]
  177. Subak-Sharpe J. H. 1967; Doublet patterns and evolution of viruses. British Medical Bulletin 23:161–168
    [Google Scholar]
  178. Subak-Sharpe J. H., Elton R. A., Russell G. J. 1974; Evolutionary implications of doublet analysis. In Evolution in the Microbial World, 24th Symposium of the Society for General Microbiology pp 131–150 Edited by Carlile M. J., Skehel J. J. Cambridge: Cambridge University Press;
    [Google Scholar]
  179. Sueoka N. 1961; Correlations between base composition of deoxyribonucleic acid and amino acid composition of protein. Proceedings of the National Academy of Sciences, U.S.A 41:1141–1148
    [Google Scholar]
  180. Sueoka N. 1962; On the genetic basis of variation and heterogeneity of DNA base composition. Proceedings of the National Academy of Sciences, U.S.A 48:582–592
    [Google Scholar]
  181. Tracy S., Desrosiers R. C. 1980; RNA from unique and repetitive DNA sequences of herpesvirus saimiri. Virology 100:204–207
    [Google Scholar]
  182. Vlazny D. A., Frenkel N. 1981; Replication of herpes simplex virus DNA: localization of replication signals within defective virus genomes. Proceedings of the National Academy of Sciences, U.S.A 78:742–746
    [Google Scholar]
  183. Vlazny D. A., Kwong A., Frenkel N. 1982; Site-specific cleavage/packaging of herpes simplex virus DNA and the selective maturation of nucleocapsids containing full-length viral DNA. Proceedings of the National Academy of Sciences, U.S.A 79:1423–1427
    [Google Scholar]
  184. Vogel F. 1972; Non-randomness of base replacement in point mutations. Journal of Molecular Evolution 1:334–367
    [Google Scholar]
  185. Wagner E. K. 1983; Transcription patterns in HSV infections. In Advances in Viral Oncology vol 3: pp 239–270 Edited by Klein G. New York: Raven Press;
    [Google Scholar]
  186. Wagner M. M., Summers W. C. 1978; Structure of the joint region and the termini of the DNA of herpes simplex virus type 1. Journal of Virology 27:374–387
    [Google Scholar]
  187. Wathen M. W., Stinski M. F. 1982; Temporal patterns of human cytomegalovirus transcription: mapping the viral RNAs synthesized at immediate early, early, and late times after infection. Journal of Virology 41:462–477
    [Google Scholar]
  188. Watson D. H. 1973; Morphology. In The Herpesviruses pp 27–41 Edited by Kaplan A. S. New York & London: Academic Press;
    [Google Scholar]
  189. Watson R. J., Clements J. B. 1980; Identification of a herpes simplex virus type 1 function continuously required for synthesis of early and late virus RNAs. Nature, London 285:329–330
    [Google Scholar]
  190. Watson R. J., Weis J. H., Salstrom J. S., Enquist L. W. 1982; Herpes simplex virus type 1 glycoprotein D gene: nucleotide sequence and expression in Escherichia coli. Science 218:381–383
    [Google Scholar]
  191. Weiner D., Gibson W. 1981; Identification of a primate cytomegalovirus group-common protein antigen. Virology 115:182–191
    [Google Scholar]
  192. Weller S. K., Lee K. J., Sabourin D. J., Schaffer P. A. 1983; Genetic analysis of temperature sensitive mutants which define the gene for the major herpes simplex virus type 1 DNA-binding protein. Journal of Virology 45:354–366
    [Google Scholar]
  193. Weststrate M. W., Geelen J. L. M. C., Wertheim P. M. E., Van Der Noorda J. 1983; Comparison of the physical maps of the DNAs of two cytomegalovirus strains. Journal of General Virology 64:47–55
    [Google Scholar]
  194. Wharton J. H., Henry B. E., O’Callaghan D. J. 1981; Equine cytomegalovirus: cultural characteristics and properties of viral DNA. Virology 109:106–119
    [Google Scholar]
  195. Whitton J. L., Clements J. B. 1984; The junctions between the repetitive and the short unique sequences of the herpes simplex virus genome are determined by the polypeptide-coding regions of two spliced immediate early mRNAs. Journal of General Virology 65:451–466
    [Google Scholar]
  196. Wildy P., Field J. H., Nash A. A. 1982; Classical herpes latency revisited. In Virus Persistence, 33rd Symposium of the Society for General Microbiology pp 133–167 Edited by Mahy B. W. J., Minson A. C., Darby G. K. Cambridge: Cambridge University Press;
    [Google Scholar]
  197. Wilkie N. M., Davison A., Chartrand P., Stow N. D., Preston V. G., Timbury M. C. 1979; Recombination in herpes simplex virus: mapping of mutations and analysis of intertypic recombinants. Cold Spring Harbor Symposia on Quantitative Biology 43:827–840
    [Google Scholar]
  198. Woese C. R. 1967; The Genetic Code. New York: Harper & Row;
    [Google Scholar]
  199. Woese C. R., Bleyman M. A. 1972; Genetic code limit organisms - do they exist?. Journal of Molecular Evolution 1:223–229
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-65-12-2077
Loading
/content/journal/jgv/10.1099/0022-1317-65-12-2077
Loading

Data & Media loading...

Most cited Most Cited RSS feed