1887

Abstract

SUMMARY

The use of T RNase fingerprinting of terminally labelled genomic double-stranded RNA species from various rotavirus isolates, to analyse the near terminal G-residue positions, has revealed an RNA species-specific fingerprint pattern covering approximately 40 nucleotides at the termini. These RNA species-specific terminal fingerprint patterns were found to be conserved in both rotavirus RNAs isolated from various animal species, and in isolates from a single animal species where gross divergence of internal RNA sequence for a particular RNA species was evident. This conservation of near terminal G-residue positions suggests that, internal to the short regions of absolute terminal sequence conservation that we have previously shown to be present on all rotavirus RNA species, there is a region of conserved sequence which is specific for a particular RNA species.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-64-9-1877
1983-09-01
2024-12-10
Loading full text...

Full text loading...

/deliver/fulltext/jgv/64/9/JV0640091877.html?itemId=/content/journal/jgv/10.1099/0022-1317-64-9-1877&mimeType=html&fmt=ahah

References

  1. Clarke I. N., McCrae M. A. 1981a; A rapid and sensitive method for analysing the genome profiles of field isolates of rotavirus. Journal of Virological Methods 2:203–209
    [Google Scholar]
  2. Clarke I. N., McCrae M. A. 1981b; A sensitive method for the production of diagnostic fingerprints of the genome segments of field isolates of rotavirus. Journal of Virological Methods 3:261–269
    [Google Scholar]
  3. Clarke I. N., McCrae M. A. 1982; Structural analysis of electrophoretic variation in the genome profiles of rotavirus field isolates. Infection and Immunity 36:492–497
    [Google Scholar]
  4. Darzynkiewicz E., Shatkin A. J. 1980; Assignment of reovirus m-RNA ribosome-binding sites to virion genome segments by nucleotide sequence analysis. Nucleic Acids Research 8:337–350
    [Google Scholar]
  5. Donis-Keller H., Maxam A. M., Gilbert W. 1977; Mapping adenines, guanines and pyrimidines in RNA. Nucleic Acids Research 4:2527–2538
    [Google Scholar]
  6. Estes M. K., Graham D. Y., Gerba C. P., Smith E. M. 1979; Simian rotavirus SA11 replication in cell cultures. Journal of Virology 31:810–815
    [Google Scholar]
  7. Kalica A. R., Garon C. F., Wyatt R. G., Mebus C. A., Van Kirk D. H., Chanock R. M., Kapikian A. Z. 1976; Differentiation of human and calf reovirus-like agents associated with diarrhea, using polyacrylamide gel electrophoresis of RNA. Virology 74:86–92
    [Google Scholar]
  8. Kalica A. R., Sereno M. M., Wyatt R. G., Mebus C. A., Chanock R. M., Kapikian A. Z. 1978; Comparison of human and animal rotavirus strains by gel electrophoresis of viral RNA. Virology 87:247–255
    [Google Scholar]
  9. Li I. K. K., Keene J. D., Schieble P. P., Joklik W. K. 1980; Nature of the 3′ terminal sequences of the plus and minus strands of the SI gene of reovirus serotypes 1, 2 and 3. Virology 105:41–51
    [Google Scholar]
  10. McCrae M. A. 1981; Terminal structure of reovirus RNAs. Journal of General Virology 55:393–403
    [Google Scholar]
  11. McCrae M. A., Faulkner-Valle G. P. 1981; Molecular biology of rotaviruses. I. Characterization of basic growth parameters and pattern of macromolecular synthesis. Journal of Virology 39:490–496
    [Google Scholar]
  12. McCrae M. A., Joklik W. K. 1978; The nature of the polypeptide encoded by each of the 10 double-stranded RNA segments of reovirus type 3. Virology 89:578–593
    [Google Scholar]
  13. McCrae M. A., McCorquodale J. G. 1982a; The molecular biology of rotaviruses. II. Identification of the protein-coding assignments of calf rotavirus genome RNA species. Virology 117:435–443
    [Google Scholar]
  14. McCrae M. A., McCorquodale J. G. 1982b; The molecular biology of rotaviruses. IV. Molecular cloning of the bovine rotavirus genome. Journal of Virology 44:1076–1079
    [Google Scholar]
  15. McCrae M. A., McCorquodale J. G. 1983; The molecular biology of rotaviruses. V. Terminal structure of viral RNA species. Virology 126:204–212
    [Google Scholar]
  16. McNulty M. S. 1978; Rotaviruses. Journal of General Virology 40:1–18
    [Google Scholar]
  17. Newman J. F. E., Brown F., Bridger J. C., Woode G. N. 1975; Characterisation of a rotavirus. Nature, London 285:631–633
    [Google Scholar]
  18. Rodger S. M., Holmes I. H. 1979; Comparison of the genomes of simian, bovine and human rotaviruses by gel electrophoresis and detection of genomic variation among bovine isolates. Journal of Virology 30:839–846
    [Google Scholar]
  19. Rodger S. M., Schnagl R. D., Holmes I. H. 1975; Biochemical and biophysical characteristics of diarrhea viruses of human and calf origin. Journal of Virology 16:1229–1235
    [Google Scholar]
  20. Sanger F., Coulson A. R. 1978; The use of thin acrylamide gels for DNA sequencing. FEBS Letters 87:107–110
    [Google Scholar]
  21. Todd D., McNulty M. S. 1976; Characterization of pig rotavirus RNA. Journal of General Virology 33:147–150
    [Google Scholar]
  22. Woode G. N., Bridger J. C., Jones J. M., Flewett T. H., Bryden A. S., Davies H. A., White G. B. B. 1976; Morphological and antigenic relationships between viruses (rotaviruses) from acute gastroenteritis of children, calves, piglets, mice and foals. Infection and Immunity 14:804–810
    [Google Scholar]
  23. Wyatt R. G., James W. D., Bohl E. H., Thiel K. W., Saif L. J., Kalica A. R., Greenberg H. B., Kapikian A. Z., Chanock R. M. 1980; Human rotavirus type 2: cultivation in vitro. Science 207:189–191
    [Google Scholar]
/content/journal/jgv/10.1099/0022-1317-64-9-1877
Loading
/content/journal/jgv/10.1099/0022-1317-64-9-1877
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error