1887

Abstract

SUMMARY

Two TK acyclovir-resistant variants of herpes simplex virus (HSV) (S1 and Tr7) and one TK BVdU-resistant variant (B3) induce abnormal thymidine kinases with impaired ability to phosphorylate the drugs used in their isolation. These enzymes have been purified and their properties compared with those of the wild-type () parent, SC16. The enzyme induced by S1 differed markedly from the other three in both its responses to salt and to pH. B3 TK recognized the enzyme’s natural substrates, thymidine, deoxycytidine, dTMP and ATP as well as the enzyme. In contrast, Tr7 and S1 TKs failed to bind deoxycytidine and bind thymidine less well than Tr7 and S1 TKs had affinities for dTMP similar to those of B3 and the enzymes. ATP binding to , Tr7 and B3 enzymes was similar but this substrate bound only weakly to S1 TK. Each mutant displayed a characteristically distinct pattern of affinities for a range of nucleoside analogue substrates, suggesting that they will show some cross-resistance to drugs which have a similar mechanism of action to acyclovir and BVdU.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-64-3-523
1983-03-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/jgv/64/3/JV0640030523.html?itemId=/content/journal/jgv/10.1099/0022-1317-64-3-523&mimeType=html&fmt=ahah

References

  1. Allaudeen H. S., Kozarich J. W., Bertino J. R., De Clercq E. 1981; On the mechanism of selective inhibition of herpes virus replication by (E)-5-(2-bromovinyl)-2′-deoxyuridine. Proceedings of the National Academy of Sciences of the United States of America 78:2698–2702
    [Google Scholar]
  2. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72:248–254
    [Google Scholar]
  3. Brigden D., Fiddian P., Rosling A. E., Ravenscroft T. 1981; Acyclovir – a review of the preclinical and early clinical data of a new antiherpes drug. Antiviral Research 1:203–212
    [Google Scholar]
  4. Chen M. S., Prusoff W. H. 1978; Association of thymidylate kinase activity with pyrimidine deoxyribo-nucleoside kinase induced by herpes simplex virus. Journal of Biological Chemistry 253:1325–1327
    [Google Scholar]
  5. Chen M. S., Prusoff W. H. 1979; Phosphorylation of 5-iodo-5′-amino-2′-5′-dideoxyuridine by herpes simplex virus type 1 encoded thymidine kinase. Journal of Biological Chemistry 254:10449–10452
    [Google Scholar]
  6. Chen M. S., Summers W. P., Walker J., Summers W. C., Prusoff W. H. 1979; Characterization of pyrimidine deoxyribonucleoside kinase (thymidine kinase) and thymidylate kinase as a multifunctional enzyme in cells transformed by herpes simplex virus type 1 and in cells infected with mutant strains of herpes simplex virus. Journal of Virology 30:942–945
    [Google Scholar]
  7. Cheng Y.-C. 1976; Deoxythymidine kinase induced in HeLa TK cells by herpes simplex virus type 1 and type 2. II. Substrate specificity and kinetic behaviours. Biochimica et biophysica acta 452:370–381
    [Google Scholar]
  8. Cheng Y.-C., Ostrander M. 1976; Herpes simplex type 1 and type 2 specific thymidine kinase. I. Induction, purification, and general properties. Journal of Biological Chemistry 251:2605–2610
    [Google Scholar]
  9. Cheng Y.-C., Prusoff W. H. 1973; Relationship between the inhibition constant (Ki) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymic reaction. Biochemical Pharmacology 22:3099–3108
    [Google Scholar]
  10. Cheng Y.-C., Grill S., Ruth J., Bergstrom D. E. 1980; Anti-herpes simplex virus and anti-human cell growth activity of E-5-propenyl-2′-deoxyuridine and the concept of selective protection in antivirus chemotherapy. Antimicrobial Agents and Chemotherapy 18:957–961
    [Google Scholar]
  11. Cheng Y.-C., Dutschman G., De Clercq E., Jones A. S., Rahim S. G., Verhelst G., Walker R. T. 1981a; Differential affinities of 5-(2-halogenovinyl)-2′-deoxyuridines for deoxythymidine kinases of various origins. Molecular Pharmacology 20:230–233
    [Google Scholar]
  12. Cheng Y.-C., Dutschman G., Fox J. J., Watanabe K. A., Michida H. 1981b; Differential activity of potential antiviral nucleoside analogs on herpes simplex virus-induced and human cellular thymidine kinases. Antimicrobial Agents and Chemotherapy 20:420–423
    [Google Scholar]
  13. Coen D. M., Schaffer P. A. 1980; Two distinct loci confer resistance to acycloguanosine in herpes simplex virus type 1. Proceedings of the National Academy of Sciences of the United States of America 77:2265–2269
    [Google Scholar]
  14. Darby G., Field H. J., Salisbury S. A. 1981; Altered substrate specificity of herpes simplex virus thymidine kinase confers acyclovir-resistance. Nature, London 289:81–83
    [Google Scholar]
  15. De Clercq E. 1981; Nucleoside analogues as antiviral agents. Acta microbiologica Academiae scientiarum hungaricae 28:289–306
    [Google Scholar]
  16. De Clercq E., DesCamps J., De Somer P., Barr P. J., Jones A. S., Walker R. T. 1979; (E)-5-(2-bromovinyl)-2′-deoxyuridine: a potent and selective anti-herpes agent. Proceedings of the National Academy of Sciences of the United States of America 76:2947–2951
    [Google Scholar]
  17. De Clercq E., De Greef H., Wildiers J., De Jonge G., Drochmans A., DesCamps J., De Somer P. 1980a; Oral (E)-5-(2-bromovinyl)-2′-deoxyuridine in severe herpes zoster. British Medical Journal 281:1178
    [Google Scholar]
  18. De Clercq E., DesCamps J., Verhelst G., Walker R. T., Jones A. S., Torrence P. F., Shugar D. 1980b; Comparative efficacy of antiherpes drugs against different strains of herpes simplex virus. Journal of Infectious Diseases 141:563–574
    [Google Scholar]
  19. Derse D., Cheng Y.-C., Furman P. A., St. Clair M. H., Elion G. B. 1981; Inhibition of purified human and herpes simplex virus-induced DNA polymerases by 9-(2-hydroxyethoxymethyl)guanine triphosphate. Effects on primer-template function. Journal of Biological Chemistry 256:11447–11451
    [Google Scholar]
  20. Elion G. B., Furman P. A., Fyfe J. A., De Miranda P., Beauchamp L., Schaeffer H. J. 1977; Selectivity of an antiherpetic agent, 9-(2-hydroxyethoxymethyl)guanine. Proceedings of the National Academy of Sciences of the United States of America 74:5716–5720
    [Google Scholar]
  21. Field H. J., Darby G. 1980; The pathogenicity for mice of strains of herpes simplex virus which are resistant to acyclovir in vitro and in vivo. Antimicrobial Agents and Chemotherapy 17:209–216
    [Google Scholar]
  22. Field H. J., Neden J. 1982; Isolation of bromovinyldeoxyuridine-resistant strains of herpes simplex virus and successful chemotherapy of mice infected with one such strain by using acyclovir. Antiviral Research 2:243–254
    [Google Scholar]
  23. Field H. J., Wildy P. 1978; The pathogenicity of thymidine kinase-deficient mutants of herpes simplex virus in mice. Journal of Hygiene 81:267–277
    [Google Scholar]
  24. Field H. J., Darby G., Wildy P. 1980; Isolation and characterization of acyclovir-resistant mutants of herpes simplex virus. Journal of General Virology 49:115–124
    [Google Scholar]
  25. Furman P. A., St. Clair M. H., Fyfe J. A., Rideout J. L., Keller P. M., Elion G. B. 1979; Inhibition of herpes simplex virus-induced DNA polymerase activity and viral DNA replication by 9-(2-hydroxyethoxymethyl)-guanine and its triphosphate. Journal of Virology 32:72–77
    [Google Scholar]
  26. Furman P. A., Coen D. M., St. Clair M. H., Schaffer P. A. 1981; Acyclovir-resistant mutants of herpes simplex virus type 1 express altered DNA polymerase or reduced acyclovir phosphorylating activities. Journal of Virology 40:936–941
    [Google Scholar]
  27. Fyfe J. A., Keller P. M., Furman P. A., Miller R. L., Elion G. B. 1978; Thymidine kinase from herpes simplex virus phosphorylates the new antiviral compound 9-(2-hydroxyethoxymethyl)guanine. Journal of Biological Chemistry 253:8721–8727
    [Google Scholar]
  28. Hill T. J., Field H. J., Blyth W. A. 1975; Acute and recurrent infection with herpes simplex virus in the mouse: a model for studying latency and recurrent disease. Journal of General Virology 28:341–353
    [Google Scholar]
  29. Jamieson A. T., Subak-Sharpe J. H. 1974; Biochemical studies on the herpes simplex virus-specified deoxypyrimidine kinase activity. Journal of General Virology 24:481–492
    [Google Scholar]
  30. Jamieson A. T., Gentry G. A., Subak-Sharpe J. H. 1974; Induction of both thymidine and deoxycytidine kinase activity by herpes virus. Journal of General Virology 24:465–480
    [Google Scholar]
  31. Kit S., Dubbs D. R. 1965; Properties of deoxythymidine kinase partially purified from non-infected and virus-infected mouse fibroblast cells. Virology 26:16–27
    [Google Scholar]
  32. Klemperer H. G., Haynes G. R., Shedden W. I. H., Watson D. H. 1967; A virus-specific thymidine kinase in BHK21 cells infected with herpes simplex virus. Virology 31:120–128
    [Google Scholar]
  33. Kowal E. P., Markus G. 1975; Affinity chromatography of mammalian thymidine kinase. Federation Proceedings 34:700
    [Google Scholar]
  34. Larder B. A., Darby G. 1982; Properties of a novel thymidine kinase induced by an acyclovir-resistant herpes simplex virus type 1 mutant. Journal of Virology 42:649–658
    [Google Scholar]
  35. Larder B. A., Derse D., Cheng Y.-C., Darby G. 1983; Properties of purified enzymes induced by pathogenic drug-resistant mutants of herpes simplex virus. Evidence for virus variants expressing normal DNA polymerase and altered thymidine kinase. Journal of Biological Chemistry (in press)
    [Google Scholar]
  36. Leung W.-C., Dubbs D. R., Trkula D., Kit S. 1975; Mitochondrial and herpesvirus-specific deoxypyrimidine kinases. Journal of Virology 16:486–497
    [Google Scholar]
  37. Schaeffer H. J., Beauchamp L., De Miranda P., Elion G. B., Bauer D. I., Collins P. 1978; 9-(2-HydrOxy-ethoxymethyl) guanine activity against viruses of the herpes group. Nature, London 272:583–585
    [Google Scholar]
  38. Schnipper L. E., Crumpacker C. S. 1980; Resistance of herpes simplex virus to acycloguanosine: the role of viral thymidine kinase and DNA polymerase loci. Proceedings of the National Academy of Sciences of the United States of America 77:2270–2273
    [Google Scholar]
  39. Tenser R. B., Dunstan M. E. 1979; Herpes simplex virus thymidine kinase expression in infection of the trigeminal ganglion. Virology 99:417–422
    [Google Scholar]
  40. Tenser R. B., Miller R. L., Rapp F. 1979; Trigeminal ganglion infection by thymidine kinase-negative mutants of herpes simplex virus. Science 205:915–917
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-64-3-523
Loading
/content/journal/jgv/10.1099/0022-1317-64-3-523
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error