1887

Abstract

SUMMARY

Sequence organization and origin of HSV-1 strain Angelotti (ANG) class II defective DNA (HSV-1 ANG dDNA1) were examined in detail by establishing physical maps and by molecular cloning. dDNA1 consists of concatemers of tandem repeat units in which sequences from the U region spanning map coordinates 0.37 to 0.415 of standard HSV ANG DNA are covalently linked to TR/IR sequences. The size of the repeat unit was determined to be about 8.9 kilobase pairs (kb), comprising sequences of 7.3 kb from U and 1.6 kb from TR/IR regions. U sequences were delineated by restriction enzyme sites I N-P and RI F-M, and were colinear with the corresponding sequences of the standard (wild-type) virus genome. Expression of dDNA1 was studied in African green monkey kidney cells and in oocytes. A major polypeptide of approx. mol. wt. 135000 (135K) was overproduced, suggesting that this protein was encoded by dDNA1. By several parameters, e.g. size, immune cross-reactivity, and affinity for native and denatured DNA, the 135K polypeptide was identified as the major HSV DNA-binding protein. It was further shown that the repeat unit contains part of the DNA polymerase gene as demonstrated by its ability to rescue some mutations in this gene.

Keyword(s): defective DNA , HSV , mapping and polypeptides
Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-64-11-2455
1983-11-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/64/11/JV0640112455.html?itemId=/content/journal/jgv/10.1099/0022-1317-64-11-2455&mimeType=html&fmt=ahah

References

  1. Anderson K. P., Costa R. H., Holland L. E., Wagner E. K. 1980; Characterization of herpes simplex virus type 1 RNA present in the absence of de novo protein synthesis. Journal of Virology 34:9–27
    [Google Scholar]
  2. Birnboim H. C., Doly J. 1979; A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Research 7:1513–1523
    [Google Scholar]
  3. Chartrand P., Stow N. D., Timbury M. C., Wilkie N. M. 1979; Physical mapping of paar mutations of herpes simplex virus type 1 and type 2 by intertypic marker rescue. Journal of Virology 31:265–276
    [Google Scholar]
  4. Chartrand P., Crumpacker C. S., Schaffer P. A., Wilkie N. M. 1980; Physical and genetic analysis of the herpes simplex virus DNA polymerase locus. Virology 103:311–326
    [Google Scholar]
  5. Clements J. B., Mclauchlan J., Mcgeoch D. J. 1979; Orientation of herpes simplex virus type 1 immediate early mRNAs. Nucleic Acids Research 7:77–92
    [Google Scholar]
  6. Coen D. M., Schaffer P. A. 1980; Two distinct loci confer resistance to acycloguanosine in herpes simplex virus type 1. Proceedings of the National Academy of Sciences, U,. S,. A 77:2265–2269
    [Google Scholar]
  7. Davison A. J., Wilkie N. M. 1981; Nucleotide sequences of the joint between the L and S segments of herpes simplex virus types 1 and 2. Journal of General Virology 55:315–331
    [Google Scholar]
  8. Frenkel N. 1981; Defective interfering herpes viruses. In The Human Herpesviruses An Interdisciplinary Perspective pp 91–120 Edited by Nahmias J. A., Dowdle W. R., Schinazi R. F. New York: Elsevier/North-Holland;
    [Google Scholar]
  9. Frenkel N., Locker H., Vlazny D. 1980; Defective herpes simplex viruses. Annals of the New York Academy of Sciences 354:347–370
    [Google Scholar]
  10. Gurdon J. B. 1976; Injected nuclei in frog oocytes: fate, enlargement and chromatin dispersal. Journal of Embryology and Experimental Morphology 36:523–540
    [Google Scholar]
  11. Honess R. W., Roizman B. 1974; Regulation of herpesvirus macromolecular synthesis. I. Cascade regulation of the synthesis of at least three groups of viral proteins. Journal of Virology 14:8–19
    [Google Scholar]
  12. Kaerner H. C., Maichle I. B., Ott A., Schroder C. H. 1979; Origin of two different classes of defective HSV-1 Angelotti DNA. Nucleic Acids Research 6:1467–1478
    [Google Scholar]
  13. Kaerner H. C., Ott-Hartmann A., Schatten R., Schroder C. H., GRAY C. P. 1981; Amplification of a short nucleotide sequence in the repeat units of defective herpes simplex virus type 1 Angelotti DNA. Journal of Virology 39:75–81
    [Google Scholar]
  14. Knopk K.-W., Kaerner H. C. 1980; Virus-specific basic phosphoproteins associated with herpes simplex virus type 1 (HSV-1) particles and the chromatin of HSV-1-infected cells. Journal of General Virology 46:405–414
    [Google Scholar]
  15. Knopf K.-W., Yamada M., Weissbach A. 1976; Hela cell DNA polymerase γ: further purification and properties of the enzyme. Biochemistry 15:4540–4548
    [Google Scholar]
  16. Knopf K.-W., Kaufman E. R., Crumpacker C. S. 1981; Physical mapping of drug resistance mutations defines an active center of the herpes simplex virus DNA polymerase enzyme. Journal of Virology 39:746–757
    [Google Scholar]
  17. Kressman A., Clarkson S. G., Telford I. L., Birnstiel M. L. 1977; Transcription of Xenopus and sea urchin histone DNA injected into the Xenopus oocyte nucleus. Cold Spring Harbor Symposia on Quantitative Biology 42:1077–1082
    [Google Scholar]
  18. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 227:680–685
    [Google Scholar]
  19. Littler E., Yeo J., Killington R. A., Purifoy D. J. M., Powell K. L. 1981; Antigenic and structural conservation of herpesvirus DNA–binding proteins. Journal of General Virology 56:409–419
    [Google Scholar]
  20. Locker H., Frenkel N., Halliburton I. 1982; Structure and expression of class II defective herpes simplex virus genomes encoding infected cell polypeptide number 8. Journal of Virology 43:574–593
    [Google Scholar]
  21. Mackem S., Roizman B. 1980; Regulation of herpesvirus macromolecular synthesis: transcription–initiation sites and domains of a genes. Proceedings of the National Academy of Sciences, U,. S,. A 77:7122–7126
    [Google Scholar]
  22. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning-A Laboratory Manual New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  23. Marsden H. S., Stow N. D., Preston V. G., Timbury M. C., Wilkie N. M. 1978; Physical mapping of herpes simplex virus-induced polypeptides. Journal of Virology 28:624–655
    [Google Scholar]
  24. Maxam A. M., Gilbert W. 1977; A new method for sequencing DNA. Proceedings of the National Academy of Sciences, U,. S,. A 74:560–564
    [Google Scholar]
  25. Mocarski E. S., Roizman B. 1981; Site-specific inversion sequence of the herpes simplex virus genome: domain and structural features. Proceedings of the National Academy of Sciences, U,. S,. A 78:7047–7051
    [Google Scholar]
  26. Mocarski E. S., Roizman B. 1982; Structure and role of the herpes simplex virus DNA termini in inversion, circularization and generation of virion DNA. Cell 31:89–97
    [Google Scholar]
  27. Morse L. S., Pereira L., Roizman B., Schaffer P. A. 1978; Anatomy of herpes simplex virus (HSV) DNA. X. Mapping of viral genes by analysis of polypeptides and functions specified by HSV-× HSV-2 recombinants. Journal of Virology 26:389–410
    [Google Scholar]
  28. O’Farrell P. H. 1975; High resolution two-dimensional electrophoresis of proteins. Journal of Biological Chemistry 250:4007–4021
    [Google Scholar]
  29. O’Farrell P. Z., Goodman H. M., O’Farrell P. H. 1977; High resolution two-dimensional electrophoresis of basic as well as acidic proteins. Cell 12:1133–1142
    [Google Scholar]
  30. Oppermann H., Levinson A. D., Varmus H. E., Levintow L., Bishop J. M. 1979; Uninfected vertebrate cells contain a protein that is closely related to the product of the avian sarcoma virus transforming gene (src). Proceedings of the National Academy of Sciences, U,. S,. A 76:1804–1808
    [Google Scholar]
  31. Powell K. L., Purifoy D. J. M. 1977; Nonstructural proteins of herpes simplex virus. I. Purification of the induced DNA polymerase. Journal of Virology 24:618–626
    [Google Scholar]
  32. Preston C. M. 1979a; Control of herpes simplex virus type 1 mRNA synthesis in cells infected with wild-type virus or the temperature-sensitive mutant tsK. Journal of Virology 29:275–284
    [Google Scholar]
  33. Preston C. M. 1979b; Abnormal properties of an immediate early polypeptide in cells infected with the herpes simplex virus type 1 mutant tsK. Journal of Virology 32:357–369
    [Google Scholar]
  34. Preston C. M., Cordingley M. G. 1982; Mrna- and DNA-directed synthesis of herpes simplex virus-coded exonuclease in Xenopus laevis oocytes. Journal of Virology 43:386–394
    [Google Scholar]
  35. Purifoy D. J. M., Powell K. L. 1976; DNA-binding proteins induced by herpes simplex virus type 2 in HEp-2 cells. Journal of Virology 19:717–731
    [Google Scholar]
  36. Rigby P. W. J., Dieckmann M., Rhodes C., Berg P. 1977; Labelling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. Journal of Molecular Biology 113:237–251
    [Google Scholar]
  37. Rungger D., Türler H. 1978; DNAs of simian virus 40 and polyoma direct the synthesis of viral tumor antigens and capsid proteins in Xenopus oocytes. Proceedings of the National Academy of Sciences, U,. S,. A 75:6073–6077
    [Google Scholar]
  38. Schroder C. H., Stegmann B., Lauppe H. F., Kaerner H. C. 1975/76; An unusual defective genotype derived from herpes simplex virus strain ANG. Intervirology 6:270–284
    [Google Scholar]
  39. Stegmann B., Zentgraf H., Ott A., Schroder C. H. 1978; Synthesis and packaging of herpes simplex virus DNA in the course of virus passages at high multiplicity. Intervirology 10:228–240
    [Google Scholar]
  40. Stow N. D., Subak-Sharpe J. H., Wilkie N. M. 1978; Physical mapping of herpes simplex virus type 1 mutations by marker rescue. Journal of Virology 28:182–192
    [Google Scholar]
  41. Twigg A. J., Sherratt D. J. 1980; Trans-complementable copy number mutants of plasmid Col. E1. Nature, London 283:216–218
    [Google Scholar]
  42. Wahl G. M., Stern M., Stark G. R. 1979; Efficient transfer of large DNA fragments from agarose gels to diazobenzyloxymethyl-paper and rapid hybridization by using dextran sulfate. Proceedings of the National Academy of Sciences, U,. S,. A 76:3683–3687
    [Google Scholar]
  43. Watson D. H., Shedden W. I. H., Elliot A., Tetsuka T., Wildy P., Bourgaux–Ramoisy D., Gold E. 1966; Virus specific antigens in mammalian cells infected with herpes simplex virus. Immunology 11:399–408
    [Google Scholar]
  44. Watson R. J., Sullivan N., Vande Woude O. F. 1981; Structures of two spliced herpes simplex virus type 1 immediate-early mRNA’s which map at the junctions of the unique and reiterated regions of the virus DNA S component. Journal of Virology 37:431–444
    [Google Scholar]
  45. Weller S. K., Lee K. J., Sabourin D. J., Schaffer P. A. 1983; Genetic analysis of temperature-sensitive mutants which define the gene for the major herpes simplex virus type 1 DNA-binding protein. Journal of Virology 45:354–366
    [Google Scholar]
  46. Yeo J., Killington R. A., Watson D. H., Powell K. L. 1981; Studies on cross-reactive antigens in the herpesviruses. Virology 108:256–266
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-64-11-2455
Loading
/content/journal/jgv/10.1099/0022-1317-64-11-2455
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error