A Protein Linked at the 5′ End of Satellite and Genomic Tomato Black Ring Virus RNAs: Study of Translation After Protease Treatment Free

Abstract

SUMMARY

The translation of tomato black ring virus genomic and satellite RNAs which had been treated with protease to remove the genome-linked protein was compared with that of untreated RNA. There were no differences in the amount or size distributions of the translation products and no differences in the proportions of added RNA which bound to ribosomes in wheat germ extracts. The genome-linked protein was found in initiation complexes. It is therefore located at or near the 5′ end of the RNA molecules and its proteolysis is not a prerequisite for translation.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-60-2-343
1982-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/60/2/JV0600020343.html?itemId=/content/journal/jgv/10.1099/0022-1317-60-2-343&mimeType=html&fmt=ahah

References

  1. Ahlquist P., Dasgupta R., Shih D. S., Zimmern D., Kaesberg P. 1979; Two-step binding of eukaryotic ribosomes to brome mosaic virus RNA-3. Nature, London 281:277–282
    [Google Scholar]
  2. Burroughs J. N., Brown F. 1978; Presence of a covalently linked protein on calicivirus RNA. Journal of General Virology 41:443–446
    [Google Scholar]
  3. Chu P. W. G., Boccardo G., Francki R. I. B. 1981; Requirement of a genome-associated protein of tobacco ringspot virus for infectivity but not for in vitro translation. Virology 109:428–430
    [Google Scholar]
  4. Dasgupta R., Shih D. S., Saris C., Kaesberg P. 1975; Nucleotide sequence of a viral RNA fragment that binds to eukaryotic ribosomes. Nature, London 256:624–628
    [Google Scholar]
  5. Daubert S. D., Bruening G., Najarian R. C. 1978; Protein bound to the genome RNAs of cowpea mosaic virus. European Journal of Biochemistry 92:45–51
    [Google Scholar]
  6. England T. E., Uhlenbeck O. C. 1978; Enzymatic oligoribonucleotide synthesis with T4 RNA ligase. Biochemistry 17:2069–02076
    [Google Scholar]
  7. Flanegan J. B., Petterson R. F., Ambros V., Hewlett M. J., Baltimore D. 1977; Covalent linkage of a protein to a defined nucleotide sequence at the 5′-terminus of virion and replicative intermediate RNAs of poliovirus. Proceedings of the National Academy of Sciences of the United States of America 74:961–965
    [Google Scholar]
  8. Floyd R. N., Stone M. P., Joklik W. K. 1974; Separation of single-stranded ribonucleic acids by acrylamide-agarose-urea gel electrophoresis. Analytical Biochemistry 59:599–609
    [Google Scholar]
  9. Fritsch C., Mayo M. A., Murant A. F. 1978; Translation of the satellite RNA of tomato black ring virus in vitro and in tobacco protoplasts. Journal of General Virology 40:587–593
    [Google Scholar]
  10. Fritsch C., Mayo M. A., Murant A. F. 1980; Translation products of genome and satellite RNAs of tomato black ring virus. Journal of General Virology 46:381–389
    [Google Scholar]
  11. Golini F., Nomoto A., Wimmer E. 1978; The genome-linked protein of picornaviruses. IV. Difference in the VPg’s encephalomyocarditis virus and poliovirus as evidence that the genome linked proteins are virus-coded. Virology 89:112–118
    [Google Scholar]
  12. Golini F., Semler B. L., Dorner A. J., Wimmer E. 1980; Protein-linked RNA of poliovirus is competent to form an initiation complex of translation in vitro. Nature, London 287:600–603
    [Google Scholar]
  13. Greenwood F. C., Hunter W. M. 1963; The preparation of 131I labelled human growth hormone of high specific radioactivity. Biochemical Journal 89:114–123
    [Google Scholar]
  14. Harris T. J. R., Dunn J. J., Wimmer E. 1978; Identification of specific fragments containing the 5′ end of poliovirus RNA after ribonuclease III digestion. Nucleic Acids Research 5:4039–4054
    [Google Scholar]
  15. Harrison B. D. 1958; Relationship between beet ringspot, potato bouquet and tomato black ring viruses. Journal of General Microbiology 18:450–460
    [Google Scholar]
  16. Harrison B. D., Barker H. 1978; Protease-sensitive structure needed for infectivity of nepovirus RNA. Journal of General Virology 40:711–715
    [Google Scholar]
  17. Hruby D. E., Roberts W. K. 1978; Encephalomyocarditis virus RNA. III. Presence of a genome-associated protein. Journal of Virology 25:413–415
    [Google Scholar]
  18. King A. M. Q., Sangar D. V., Harris T. J. R., Brown F. 1980; Heterogeneity of the genome linked protein of foot and mouth disease virus. Journal of Virology 34:627–634
    [Google Scholar]
  19. Lee Y. F., Nomoto A., Detjen B. M., Wimmer E. 1977; A protein covalently linked to poliovirus genome RNA. Proceedings of the National Academy of Sciences of the United States of America 74:59–63
    [Google Scholar]
  20. Marcu K., Dudock B. 1974; Characterization of a highly efficient protein synthesizing system derived from commercial wheat germ. Nucleic A cids Research 1:1385–1397
    [Google Scholar]
  21. Mayo M. A., Barker H., Harrison B. D. 1979a; Evidence for a protein covalently linked to tobacco ringspot virus RNA. Journal of General Virology 43:735–740
    [Google Scholar]
  22. Mayo M. A., Barker H., Harrison B. D. 1979b; Polyadenylate in the RNA of five nepoviruses. Journal of General Virology 43:603–610
    [Google Scholar]
  23. Murant A. F., Mayo M. A., Harrison B. D., Goold R. A. 1973; Evidence for two functional RNA species and a satellite RNA in tomato black ring virus. Journal of General Virology 19:275–278
    [Google Scholar]
  24. Murant A. F., Taylor M., Duncan G. H., Raschke J. H. 1981; Improved estimates of molecular weight of plant virus RNA by agarose gel electrophoresis and electron microscopy after denaturation with glyoxal. Journal of General Virology 53:321–332
    [Google Scholar]
  25. Najarian R. C., Bruening G. 1980; Similar sequences from the 5′ end of cowpea mosaic virus RNAs. Virology 106:301–309
    [Google Scholar]
  26. Nomoto A., Kitamura N., Golini F., Wimmer E. 1977; The 5′ terminal structure of poliovirion RNA and poliovirus mRNA differ only in the genome linked protein VPg. Proceedings of the National Academy of Sciences of the United States of America 74:5345–349
    [Google Scholar]
  27. Perez-Bercoff R., Gander M. 1978; In vitro translation of mengovirus RNA deprived of the terminally linked (capping?) protein. FEBS Letters 96:306–312
    [Google Scholar]
  28. Pinck L., Franck A., Fritsch C. 1979; Formation of ribosome RNA initiation complexes with alfalfa mosaic virus RNA 4 and RNA 3. Nucleic Acids Research 7:151–166
    [Google Scholar]
  29. Pinck M., Fritsch C., Ravelonandro M., Thivent C., Pinck L. 1981; Binding of ribosomes to the 5′ leader sequence (N = 258) of RNA-3 from alfalfa mosaic virus. Nucleic Acids Research 9:1087–1100
    [Google Scholar]
  30. Sangar D. V., Rowlands D. J., Harris T. J. R., Brown F. 1977; Protein covalently linked to foot and mouth disease virus RNA. Nature, London 268:648–650
    [Google Scholar]
  31. Sangar D. V., Black D. N., Rowlands D. J., Harris T. J. R., Brown F. 1980; Location of the initiation site for protein synthesis on foot and mouth disease virus RNA by in vitro translation of defined fragments of the RNA. Journal of Virology 33:59–68
    [Google Scholar]
  32. Stanley J., Van Kammen A. 1979; Nucleotide sequences adjacent to the proteins covalently linked to the cowpea mosiac virus genome. European Journal of Biochemistry 101:45–49
    [Google Scholar]
  33. Stanley J., Rottier P., Davies J. W., Zabel P., Van Kammen A. 1978; A protein linked to the 5′ termini of both RNA components of the cowpea mosaic virus genome. Nucleic Acids Research 5:4505–4522
    [Google Scholar]
  34. Swank R. T., Munkres K. D. 1971; Molecular weight analysis of oligopeptides by electrophoresis in polyacrylamide gel with sodium dodecyl sulfate. Analytical Biochemistry 39:462–477
    [Google Scholar]
  35. Vartapetian A. B., Drygin Y. F., Chumakov K. M., Bogdanov A. A. 1980; The structure of the covalent linkage between proteins and RNA in encephalomyocarditis virus. Nucleic Acids Research 8:3729–3742
    [Google Scholar]
  36. Vasquez D. 1979 Inhibitors of Protein Biosynthesis in Molecular Biology, Biochemistry and Biophysics p 130 Wien & New York: Springer-Verlag;
    [Google Scholar]
  37. Veerisetty V., Sehgal O. P. 1980; Proteinase K-sensitive factor essential for the infectivity of southern bean mosaic virus ribonucleic acid. Phytopathology 70:282–284
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-60-2-343
Loading
/content/journal/jgv/10.1099/0022-1317-60-2-343
Loading

Data & Media loading...

Most cited Most Cited RSS feed