1887

Abstract

SUMMARY

Linear unintegrated Kirsten murine sarcoma virus DNA synthesized after acute infection of NIH/3T3 cells or by detergent-disrupted virions, was studied by restriction enzyme cleavage and agarose gel electrophoresis. Labelled DNA (cDNA) synthesized by reverse transcription of a virion RNA template was used to detect viral DNA sequences by filter hybridization. The sites of cleavage for eleven enzymes were located on the genome. Hybridization studies using a cDNA probe specific for the 3′ end of the genome defined the orientation of the physical map with respect to virion RNA and identified terminally redundant sequences on the genome. Further evidence for terminal redundancy was obtained by restriction mapping of linear and circular viral DNA, where the duplication was shown to be 0.34 × 10 (500 base pairs) in length and in a tandem orientation. Circular viral DNA was found predominantly in the nucleus of acutely infected cells and it existed in two major size classes. The larger size class represented an exact circularization of linear DNA (with no other sequence permutation) whilst in the smaller DNA species one of the terminally redundant sequences was absent.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-58-1-95
1982-01-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/58/1/JV0580010095.html?itemId=/content/journal/jgv/10.1099/0022-1317-58-1-95&mimeType=html&fmt=ahah

References

  1. Aaronson S. A., Weaver C. 1971; Characterization of murine sarcoma virus (Kirsten) transformation of mouse and human cells. Journal of General Virology 13:245–252
    [Google Scholar]
  2. Anderson G. R., Robbins K. C. 1976; Rat sequences of the Kirsten and Harvey murine sarcoma virus genomes: nature origin and expression in rat tumour RNA. Journal of Virology 17:335–351
    [Google Scholar]
  3. Anderson G. R., Marotti K. R., Whitaker Dowling P. A. 1979; A candidate rat-specific gene product of the Kirsten murine sarcoma virus. Virology 99:31–48
    [Google Scholar]
  4. Anet R., Strayer D. R. 1969; Density gradient relaxation: a method for buoyant density separations of DNA. Biochemical and Biophysical Research Communications 34:328–334
    [Google Scholar]
  5. Avery R. J., Norton B. D., Jones J. S., Burke D. C., Morris A. G. 1980; Interferon inhibits transformation by murine sarcoma virus before integration of the provirus. Nature, London 288:93–95
    [Google Scholar]
  6. Bacheler L. T., Fan H. 1979; Multiple integration sites for Moloney murine leukaemia virus in productively infected mouse fibroblasts. Journal of Virology 30:657–667
    [Google Scholar]
  7. Benz E. W., Dina D. 1979; Moloney murine sarcoma virus synthesise genome-length double stranded DNA in vitro. Proceedings of the National Academy of Sciences of the United States of America 76:3294–3298
    [Google Scholar]
  8. Chien Y. H., Lai M., Shih I. M., Yverma T., Scoln1ck E. M., Roy Burman P., Davidson N. 1979; Heteroduplex analyses of the sequence relationships between the genomes of Kirsten sarcoma viruses, their respective parental leukaemia viruses and the rat endogenous 30S RNA. Journal of Virology 31:752–760
    [Google Scholar]
  9. Cohen J. C., Shank P. R., Morris V. L., Cardiff R., Varmus H. E. 1979; Integration of the DNA of mouse mammary tumour virus in virus-infected normal and neoplastic tissue of the mouse. Cell 16:333–345
    [Google Scholar]
  10. Denhardt D. J. 1966; A membrane filter technique for the detection of complementary DNA. Biochemical and Biophysical Research Communications 23:641–646
    [Google Scholar]
  11. Dina D., Benz E. W. 1980; Structure of murine sarcoma virus replicative intermediates synthesised in vitro. Journal of Virology 33:377–389
    [Google Scholar]
  12. Giani A. M., Smotkin D., Weinberg R. A. 1975; Murine leukaemia virus: detection of unintegrated double-stranded DNA forms of the provirus. Proceedings of the National Academy of Sciences of the United States of America 72:447–451
    [Google Scholar]
  13. Gilboa E., Goff S., Shields F., Yoshimura A., Mitra S., Baltimore D. 1979a; In vitro synthesis of a 9 Kpb terminally redundant DNA carrying the infectivity of Moloney murine leukaemia virus. Cell 16:863–874
    [Google Scholar]
  14. Gilboa E., Mitra S. W., Goff S., Baltimore D. 1979b; A detailed model of reverse transcription and tests of crucial aspects. Cell 18:93–100
    [Google Scholar]
  15. Goldfarb M. P., Weinberg R. A. 1979; Physical map of biologically active Harvey sarcoma virus unintegrated linear DNA. Journal of Virology 32:30–39
    [Google Scholar]
  16. Hager G. L., Chang E. H., Chan H. W., Garon C. F., Israel M. A., Martin M. A., Scolnick E. M., Lowy D. R. 1979; Molecular cloning of Harvey sarcoma virus closed circular DNA intermediates: initial structure and biological characterisation. Journal of Virology 31:795–809
    [Google Scholar]
  17. Hirt B. 1967; Selective extraction of polyoma DNA from infected mouse cell cultures. Proceedings of the National Academy of Sciences of the United States of America 74:989–993
    [Google Scholar]
  18. Howk R. S., Troxler D. H., Lowy D., Duesberg P. H., Scolnick E. M. 1976; Identification of a 30S RNA with properties of a defective type C virus in murine cells. Journal of Virology 25:115–123
    [Google Scholar]
  19. Hughes S. H., Shank P. R., Spector D. H., Kung H. J., Bishop J. M., Varmus H. E. 1978; Proviruses of avian sarcoma virus are terminally redundant, co-linear with unintegrated linear DNA and integrated at many sites. Cell 15:1397–1410
    [Google Scholar]
  20. Kirsten K. H., Mayer L. H. 1967; Morphological responses to a murine erythroblastosis virus. Journal of the National Cancer Institute 39:311–319
    [Google Scholar]
  21. Langridge J., Langridge P., Berquist P. I. 1980; Recovery of nucleic acid after electrophoresis in agarose gels. Analytical Biochemistry 103:264–271
    [Google Scholar]
  22. Maisel J., Klement V., Lai M., Ostertag W., Duesberg P. 1973; RNA components of murine sarcoma and leukaemia viruses. Proceedings of the National Academy of Sciences of the United States of America 70:3536–3540
    [Google Scholar]
  23. Majors J. E., Yarmus H. E. 1981; Nucleotide sequences at host-proviral junctions for mouse mammary tumour virus. Nature, London 289:253–258
    [Google Scholar]
  24. Morris A., Clegg C., Jones J., Rodgers B., Avery R. J. 1980; The isolation and characterization of a clonally related series of murine retrovirus-infected murine cells. Journal of General Virology 49:105–113
    [Google Scholar]
  25. Sabran T. L., Hus T. W., Veater C., Kaji K., Mason W. S., Taylor J. M. 1979; Analysis of integrated avian RNA tumour virus DNA in transformed chicken, duck and quail fibroblasts. Journal of Virology 29:170–178
    [Google Scholar]
  26. Scolnick E. M., Rands E., Williams D., Parks W. P. 1973; Studies on the nucleic acid sequences of Kirsten murine sarcoma virus: a model for formation of a mammalian RNA containing sarcoma virus. Journal of Virology 12:458–463
    [Google Scholar]
  27. Scolnick E. M., Vaas W. C., Howk R. S., Duesberg P. H. 1979; Defective retrovirus-like 30S RNA species in rat and mouse cells are infectious if packaged by type C helper virus. Journal of Virology 29:964–972
    [Google Scholar]
  28. Shank P. R., Varmus H. E. 1978; Virus-specific DNA in the cytoplasm of avian sarcoma virus-infected cells is a precursor to covalently closed circular viral DNA in the nucleus. Journal of Virology 25:104–114
    [Google Scholar]
  29. Shank P. R., Hughes S. H., Kung H. J., Majors J. E., Quientrell N., Guntaka R. V., Bishop J. M., Varmus H. E. 1978a; Mapping unintegrated avian sarcoma virus DNA: termini of linear DNA bear 300 nucleotides present once or twice in two species of circular DNA. Cell 15:1383–1395
    [Google Scholar]
  30. Shank P. R., Cohen J. C., Varmus H. E., Yamamoto K. R., Ringold G. M. 1978b; Mapping of linear and circular forms of mouse mammary tumour virus DNA with restriction endonucleases: evidence for a large specific deletion occurring at high frequency during circularisation. Proceedings of the National Academy of Sciences of the United States of America 75:2112–2116
    [Google Scholar]
  31. Shih T. Y., Young H. A., Coffin J. M., Scolnick E. M. 1978; Physical map of Kirsten sarcoma virus genome as determined by fingerprinting RNase T1-resistant oligonucleotides. Journal of Virology 25:238–252
    [Google Scholar]
  32. Shih T. Y., Weeks M. P., Young H. A., Scolnick E. M. 1979a; Identification of a sarcoma virus-coded phosphoprotein in non-producer cells transformed by Kirsten and Harvey murine sarcoma virus. Virology 96:64–79
    [Google Scholar]
  33. Shih T. Y., Weeks M. P., Young H. A., Scolnick E. M. 1979b; p21 of Kirsten murine sarcoma virus is thermolabile in a viral mutant temperature sensitive for the maintenance of transformation. Journal of Virology 31:546–556
    [Google Scholar]
  34. Shoemaker C., Goff S., Gilboa E., Paskino M., Mitra S. W., Baltimore D. 1980; Structure of a cloned circular Moloney murine leukaemia virus DNA molecule containing an inverted segment: implications for retrovirus integration. Proceedings of the National Academy of Sciences of the United States of America 77:3932–3936
    [Google Scholar]
  35. Southern E. M. 1975; Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98:503–517
    [Google Scholar]
  36. Steffen D., Weinberg R. A. 1978; The integrated genome of murine leukaemia virus. Cell 15:1003–1010
    [Google Scholar]
  37. Taylor J. M., Illmensee R., Summers J. 1976; Efficient transcription of RNA into DNA by avian sarcoma virus polymerase. Biochimica et Biophysica Acta 442:324–330
    [Google Scholar]
  38. Thomas M., Davis R. W. 1975; Studies on the cleavage of bacteriophage lambda DNA with EcoRI restriction endonuclease. Journal of Molecular Biology 91:315–328
    [Google Scholar]
  39. Verma I. M. 1978; Genome organisation of RNA tumour viruses. I. In vitro synthesis of full, genome-length single-stranded and double-stranded viral DNA transcripts. Journal of Virology 26:615–629
    [Google Scholar]
  40. Wahl G. M., Stern M., Stark G. R. 1979; Efficient transfer of large DNA fragments from agarose gels to diazobenzyloxymethyl-paper and rapid hybridisation using dextran sulphate. Proceedings of the National Academy of Sciences of the United States of America 76:3683–3687
    [Google Scholar]
  41. Weinberg R. A. 1977; Structure of the intermediates leading to the integrated provirus. Biochimica et Biophysica Acta 473:39–55
    [Google Scholar]
  42. Wellauer P. K., Reeder R. H., Carroll D., Brown D. D., Deutch A., Higashinakagawa T., Dawid I. B. 1974; Amplified ribosomal DNA from Xenopus laevis has heterogeneous spacer lengths. Proceedings of the National Academy of Sciences of the United States of America 71:2823–2827
    [Google Scholar]
  43. Yoshimura F. K., Weinberg R. A. 1978; Restriction endonuclease cleavage of linear and closed circular murine leukaemia virus DNAs: discovery of a smaller circular form. Cell 16:323–332
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-58-1-95
Loading
/content/journal/jgv/10.1099/0022-1317-58-1-95
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error