1887

Abstract

SUMMARY

In order to investigate whether defective phages of killed sensitive bacteria by a lysis from without mechanism, the minimal number of phages required for killing was determined. This figure was found to vary with the m.o.i., giving a value of 1 on extrapolation to an m.o.i. of 0. This excluded lysis from without as the only killing mechanism, although it might play a role at high m.o.i.s. This was confirmed by experiments on leakage of ATP and u.v.-absorbing material, the uptake of oxygen and the effect of the phages on the membrane potential. Apart from a short, initial leakage of ATP, the cell membrane was not affected at low m.o.i.s. These results lead to the conclusion that at low m.o.i.s the phages acted on a cytoplasmic component. Treatment of defective phages for 10 min at pH 2.5 resulted in breakdown of the phages without complete abolition of the killing activity. The active component, which was shown not to be DNA, could not be isolated from the mixture, but SDS gel electrophoresis of PBS X and a non-killing mutant of this phage suggested that a protein with a mol. wt. of 85000 was involved in killing.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-56-2-275
1981-10-01
2021-10-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/56/2/JV0560020275.html?itemId=/content/journal/jgv/10.1099/0022-1317-56-2-275&mimeType=html&fmt=ahah

References

  1. Berget P. B., Poteete A. R. 1980; Structure and functions of the bacteriophage P22 tail protein. Journal of Virology 34:234–243
    [Google Scholar]
  2. Bowman C. M., Dahlberg J. E., Ikemura T., Konisky J., Nomura M. 1971; Specific inactivation of 16S ribosomal RNA induced by colicin E3 in vivo. Proceedings of the National Academy of Sciences of the United States of America 68:964–968
    [Google Scholar]
  3. Bussey H., Sherman D. 1973; Yeast killer factor: ATP leakage and coordinate inhibition of macromolecular synthesis in sensitive cells. Biochimica et Biophysica Acta 298:868–875
    [Google Scholar]
  4. Buxton R. S. 1976; Prophage mutation causing heat inducibility of defective Bacillus subtilis bacteriophage PBS X. Journal of Virology 20:22–28
    [Google Scholar]
  5. Buxton R. S. 1980; Selection of Bacillus subtilis 168 mutants with deletions of the PBS X prophage. Journal of General Virology 46:427–437
    [Google Scholar]
  6. Cremers A. F. M., Steensma H. Y., Mellema J. E. 1978; The quaternary structure of the sheaths of defective phages similar to PBS X. European Journal of Biochemistry 89:389–395
    [Google Scholar]
  7. Cummings D. J., Chapman V. A., Delong S. S. 1968; Disruption of T-even bacteriophages by dimethyl sulfoxide. Journal of Virology 2:610–620
    [Google Scholar]
  8. De Graaf F. K., Niekus H. G. D., Klootwuk J. 1973; Inactivation of bacterial ribosomes in vivo and in vitro by cloacin DF13. FEBS Letters 35:161–165
    [Google Scholar]
  9. Delbruck M. 1940; The growth of bacteriophage and lysis of the host. Journal of General Physiology 23:643–660
    [Google Scholar]
  10. Duckworth D. H., Winkler H. H. 1972; Metabolism of T4 bacteriophage ghost-infected cells. II. Do ghosts cause a generalized permeability change?. Journal of Virology 9:917–922
    [Google Scholar]
  11. Holland I. B. 1965; A bacteriocin specifically affecting DNA synthesis in Bacillus megaterium. Journal of Molecular Biology 12:429–438
    [Google Scholar]
  12. Kao S.-H., Mcclain W. H. 1980; Baseplate protein of bacteriophage T4 with both structural and lytic functions. Journal of Virology 34:95–103
    [Google Scholar]
  13. Kayalar C., Luria S. E. 1979; Permeability to ions and organic molecules induced by colicin K on liposomes. Abstracts of the Annual Meeting of the American Society for Microbiology 146:
    [Google Scholar]
  14. Koerner J. F., Snustad D. P. 1979; Shutoff of host macromolecular synthesis after T-even bacteriophage infection. Microbiological Reviews 43:199–223
    [Google Scholar]
  15. Konopa G., Taylor K. 1975; Isolation of coliphage lambda ghosts able to adsorb onto bacterial cells. Biochimica et Biophysica Acta 399:460–467
    [Google Scholar]
  16. Landman O. E., Ryter A., Frehel C. 1968; Gelatin-induced reversion of protoplasts of Bacillus subtilis to the bacillary form: electron-microscopic and physical study. Journal of Bacteriology 96:2154–2170
    [Google Scholar]
  17. Lanni Y. T. 1968; First-step transfer deoxyribonucleic acid of bacteriophage T5. Bacteriological Reviews 32:227–242
    [Google Scholar]
  18. Mahoney D. E., Butler M. E., Lewis R. G. 1971; Bacteriocins of Clostridium perfringens. 2. Studies on mode of action. Canadian Journal of Microbiology 17:1435–1442
    [Google Scholar]
  19. Okamoto K., Mudd J. A., Mangan J., Huang W. M., Subbaiah T. V., Marmur J. 1968; Properties of the defective phage of Bacillus subtilis. Journal of Molecular Biology 34:413–428
    [Google Scholar]
  20. Ozaki M., Higashi Y., Saito H., An T., Amana T. 1966; Identity of megacin A with phospholipase A. Biken Journal 9:201–213
    [Google Scholar]
  21. Rodbell M. 1980; The role of hormone receptors and GTP-regulatory proteins in membrane transduction. Nature, London 284:17–22
    [Google Scholar]
  22. Schein S. J., Kagan B. L., Finkelstein A. 1978; Colicin K acts by forming voltage-dependent channels in phospholipid bilayer membranes. Nature, London 276:159–163
    [Google Scholar]
  23. Senior B. W., Holland I. B. 1971; Effect of colicin E3 upon the 30S ribosomal subunit of Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America 68:959–963
    [Google Scholar]
  24. Sharp P. A., Sugden B., Sambrook J. 1973; Detection of two restriction endonuclease activities in Haemophilus parainfluenzae using analytical agarose-ethidium bromide electrophoresis. Biochemistry 12:3055–3063
    [Google Scholar]
  25. Spizizen J. 1958; Transformation of biochemically deficient strains of Bacillus subtilis by deoxyribonucleate. Proceedings of the National Academy of Sciences of the United States of America 44:1072–1078
    [Google Scholar]
  26. Steensma H. Y. 1981; Adsorption of the defective phage PBS Z1 to Bacillus subtilis 168 Wt. Journal of General Virology 52:93–101
    [Google Scholar]
  27. Steensma H. Y., Sondermeuer P. J. A. 1977; A counting method for determining the burst size of defective phages from Bacillus subtilis. Antonie van Leeuwenhoek 43:305–316
    [Google Scholar]
  28. Steensma H. Y., Robertson L. A., Van Elsas J. D. 1978; The occurrence and taxonomic value of PBS X-like defective phages in the genus Bacillus. Antonie van Leeuwenhoek 44:353–366
    [Google Scholar]
  29. Stent G. S. 1963 Molecular Biology of Bacterial Viruses San Francisco and London: W. H. Freeman;
    [Google Scholar]
  30. Strehler B. L. 1974; Adenosine-5′-triphosphate and creatine phosphate. Determination with luciferase. In Methods of Enzymatic Analysis 2nd edn vol 4: pp 2112–2126 Edited by Bergmeyer H. U. Weinheim: Verlag Chemie;
    [Google Scholar]
  31. Takeishi K., Kaji A. 1975; Presence of active polyribosomes in bacterial cells infected with T4 bacteriophage ghosts. Journal of Virology 16:62–69
    [Google Scholar]
  32. Takeishi K., Kaji A. 1976; Protein synthesis in bacteriophage ghost-infected cells. Journal of Virology 18:103–110
    [Google Scholar]
  33. Thurm P., Garro A. J. 1975; Bacteriophage-specific protein synthesis during induction of the defective Bacillus subtilis bacteriophage PBS X. Journal of Virology 16:179–183
    [Google Scholar]
  34. Tikhonenko A. S. 1970 Ultrastructure of Bacterial Viruses pp 187–191 New York and London: Plenum Press;
    [Google Scholar]
  35. Tokuda H., Konisky J. 1978; Mode of action of colicin la: effect of colicin on the Escherichia coli proton electrochemical gradient. Proceedings of the National Academy of Sciences of the United States of America 75:2579–2583
    [Google Scholar]
  36. Tokuda H., Konisky J. 1979; Effect of colicins Ia and El on ion permeability ofliposomes. Proceedings of the National Academy of Sciences of the United States of America 76:6167–6171
    [Google Scholar]
  37. Tschopp J., Arisaka F., Van Driel R., Engel J. 1979; Purification, characterization and reassembly of the bacteriophage T4D tail sheath protein pl8. Journal of Molecular Biology 128:247–258
    [Google Scholar]
  38. Waggoner A. S., Grinvald A. 1978; Mechanisms of rapid optical changes of potential sensitive dyes. Annals of the New York Academy of Sciences 303:217–241
    [Google Scholar]
  39. Wagner E. F., Schweiger M. 1980; Development of Escherichia coli virus T1. ATP-mediated discrimination of gene expression. Journal of Biological Chemistry 255:540–542
    [Google Scholar]
  40. Wagner E. F., Ponta H., Schweiger M. 1980; Development of Escherichia coli virus T1. The role of the proton motive force. Journal of Biological Chemistry 255:534–539
    [Google Scholar]
  41. Watson D. H., Sherratt D. J. 1979; In vivo proteolytic cleavage of colicins requires specific receptor binding. Nature, London 278:362–364
    [Google Scholar]
  42. Wickner R. B. 1979; The killer double-stranded RNA plasmids of yeast. Plasmid 2:303–322
    [Google Scholar]
  43. Winkler H. H., Duckworth D. H. 1971; Metabolism of T4 bacteriophage ghost-infected cells: effect of bacteriophage and ghosts on the uptake of carbohydrates in Escherichia coli B. Journal of Bacteriology 107:259–267
    [Google Scholar]
  44. Yamakawa T., Toyoda H., Yamada Yamaguchi C., WataNabe T. 1980; Biological properties of a Bacillus subtilis defective phage PBS H and its complementary deoxyribonucleic acid strands. Journal of General and Applied Microbiology 26:255–263
    [Google Scholar]
  45. Yasbin R. E., Ledbetter M. 1978; Isolation of a Bacillus subtilis 168 Wt derivative sensitive to defective bacteriophage PBS X. Journal of Virology 25:703–704
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-56-2-275
Loading
/content/journal/jgv/10.1099/0022-1317-56-2-275
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error