1887

Abstract

SUMMARY

The sequence of herpes simplex virus (HSV) is present as a direct repeat at the genomic termini and also in inverted orientation at the joint between the L and S segments. DNA sequences have been determined for the joint regions of the genomes of HSV-1 and HSV-2, and relative to these sequences the genomic termini are in both cases located close to a short direct repeat of 17 to 21 base pairs (bp) at the and junctions. The HSV-1 joint region contains three separate tandem direct reiterations of short sequences, (12, 16 and 17 bp in strain 17) and we conclude that size heterogeneity in the and sequences is due to variable copy numbers of these repeated units. It is likely that a considerable part of the HSV-1 joint region does not code for polypeptide.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-55-2-315
1981-08-01
2022-08-15
Loading full text...

Full text loading...

/deliver/fulltext/jgv/55/2/JV0550020315.html?itemId=/content/journal/jgv/10.1099/0022-1317-55-2-315&mimeType=html&fmt=ahah

References

  1. Benoist C., O’Hare K., Breathnach R., Chambon P. 1980; The ovalbumin gene sequence of putative control regions. Nucleic Acids Research 8:127–142
    [Google Scholar]
  2. Boyer H. W., Roulland Dussoix D. 1969; A complementation analysis of the restriction and modification of DNA in Escherichia coli. Journal of Molecular Biology 41:459–472
    [Google Scholar]
  3. Brown S. M., Ritchie D. A., Subak-Sharpe J. H. 1973; Genetic studies with herpes simplex virus type 1: isolation of temperature-sensitive mutants, their arrangement into complementation groups and recombination analysis leading to a linkage map. Journal of General Virology 18:329–346
    [Google Scholar]
  4. Catcheside D. G., Corcoran D. 1973; Control of non-allelic recombination in Neurospora crassa. Australian Journal of Biological Sciences 26:1337–1353
    [Google Scholar]
  5. Clements J. B., Cortini R., Wilkie N. M. 1976; Analysis of herpesvirus substructure by means of restriction endonucleases. Journal of General Virology 30:243–256
    [Google Scholar]
  6. Clewell D. B., Helinski D. R. 1970; Properties of a supercoiled deoxyribonucleic acid-protein relaxation complex and strand specificity of the relaxation event. Biochemistry 9:4428–4440
    [Google Scholar]
  7. Cohen S. N., Chang A. C. Y., Hsu L. 1972; Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. Proceedings of the National Academy of Sciences of the Unites States of America 69:2110–2114
    [Google Scholar]
  8. Delius H., Clements J. B. 1976; A partial denaturation map of herpes simplex virus type 1 DNA: evidence for inversions of the unique DNA region. Journal of General Virology 33:125–133
    [Google Scholar]
  9. Dhar R., Subramanian K. N., Pan J., Weissman S. M. 1977; Structure of a large segment of the genome of simian virus 40 that does not encode known proteins. Proceedings of the National Academy of Sciences of the United States of America 74:827–831
    [Google Scholar]
  10. Gannon F., O’Hare K., Perrin F., Lepennec J. P., Benoist C., Cochet M., Breathnach R., Royal A., Garapin A., Cami B., Chambon P. 1979; Organisation and sequences at the 5′ end of a cloned complete ovalbumin gene. Nature, London 278:428–434
    [Google Scholar]
  11. Gluzman Y., Sambrook J. F., Frisque R. J. 1980; Expression of early genes of origin-defective mutants of simian virus 40. Proceedings of the National Academy of Sciences of the United States of America 77:3898–3902
    [Google Scholar]
  12. Goeddel D. V., Leung D. W., Dull T. J., Gross M., Lawn R. M., McCandliss R., Seeburg P. H., Ullrich A., Yelverton E., Gray P. J. 1981; The structure of eight distinct cloned human leukocyte interferon cDNAs. Nature, London 290:20–26
    [Google Scholar]
  13. Grafstrom R. H., Alwine J. C., Steinhart W. L., Hill C. W. 1974; Terminal repetitions in herpes simplex virus type 1 DNA. Cold Spring Harbor Symposia on Quantitative Biology 39:679–681
    [Google Scholar]
  14. Grafstrom R. H., Alwine J. C., Steinhart W. L., Hill C. W., Hyman R. W. 1975; The terminal repetition of herpes simplex virus DNA. Virology 67:144–157
    [Google Scholar]
  15. Grunstein M., Hogness D. S. 1975; Colony hybridization: a method for the isolation of cloned DNAs that contain a specific gene. Proceedings of the National Academy of Sciences of the United States ofAmerica 72:3961–3965
    [Google Scholar]
  16. Hayward G. S., Jacob R. J., Wadsworth S. C., Roizman B. 1975; Anatomy of herpes simplex virus DNA: evidence for four populations that differ in the relative orientations of their long and short components. Proceedings of the National Academy of Sciences of the United States of America 71:4243–4247
    [Google Scholar]
  17. Hobart P., Crawford R., Shen L., Pictet R., Rutter W. G. 1980; Cloning and sequence analysis of cDNAs encoding two distinct somatostatin precursors found in the endocrine pancreas of angler fish. Nature, London 288:137–141
    [Google Scholar]
  18. Kieff E. D., Bachenheimer S. L., Roizman B. 1971; Size, composition and structure of the deoxyribonucleic acid of herpes simplex virus subtypes 1 and 2. Journal of Virology 8:125–132
    [Google Scholar]
  19. Knipe D. M., Ruyechan W. T., Honess R. W., Roizman B. 1979; Molecular genetics of herpes simplex virus: the terminal sequences of the L and S components are obligatorily identical and constitute a part of a structural gene mapping predominantly in the S component. Proceedings of the National Academy of Sciences of the United States of America 76:4534–4538
    [Google Scholar]
  20. Komano T., Sinsheimer R. L. 1968; Preparation and purification of ϕ X–RF component I. Biochimica et Biophysica Acta 155:295–298
    [Google Scholar]
  21. Kudler L., Hyman R. W. 1979; Exonuclease III digestion of herpes simplex virus DNA. Virology 92:68–81
    [Google Scholar]
  22. Landy A., Ross W. 1977; Viral integration and excision: structure of the lambda att sites. Science 197:1147–1160
    [Google Scholar]
  23. Locker H., Frenkel N. 1979; Bam I, Kpn I and Sal I restriction enzyme maps of the DNAs of herpes simplex virus strains Justin and F: occurrence of heterogeneities in defined regions of viral DNA. Journal of Virology 32:429–441
    [Google Scholar]
  24. Lonsdale D. M., Brown S. M., Subak-Sharpe J. H., Warren K. G., Koprowski H. 1979; The polypeptide and the DNA restriction enzyme profiles of spontaneous isolates of herpes simplex virus type 1 from explants of human trigeminal, superior cervical and vagus ganglia. Journal of General Virology 43:151–171
    [Google Scholar]
  25. Lonsdale D. M., Brown S. M., Lang J., Subak-Sharpe J. H., Koprowski H., Warren K. G. 1980; Variations in herpes simplex virus isolated from human ganglia and a study of clonal variation in HSV-1. Annals of the New York Academy of Sciences 354:291–308
    [Google Scholar]
  26. MacDonald R. J., Crerar M. M., Swain W. F., Pictet R. L., Thomas G., Rutter W. J. 1980; Structure of a family of rat amylase genes. Nature, London 287:117–122
    [Google Scholar]
  27. Maniatis T., Jeffrey A., van De Sande H. 1975; Chain length determination of small double- and single-stranded DNA molecules by polyacrylamide gel electrophoresis. Biochemistry 14:3787–3794
    [Google Scholar]
  28. Marsden H. S., Crombie I. K., Subak-Sharpe J. H. 1976; Control of host protein synthesis in herpes virus infected cells: analysis of polypeptides induced by wild-type and sixteen temperature-sensitive mutants of HSV strain 17. Journal of General Virology 31:347–372
    [Google Scholar]
  29. Maxam A. M., Gilbert W. 1980; Sequencing end-labelled DNA with base-specific chemical cleavages. Methods in Enzymology 65:499–560
    [Google Scholar]
  30. Mocarski E. S., Post L. E., Roizman B. 1980; Molecular engineering of the herpes simplex virus genome: insertion of a second L-S junction into the genome causes additional genome inversions. Cell 22:243–255
    [Google Scholar]
  31. Morse L. S., Buchman T. G., Roizman B., Schaffer P. A. 1978; Anatomy of HSV DNA. IX. Apparent exclusion of some parental DNA arrangements in the generation of intertypic (HSV-1 × HSV-2) recombinants. Journal of Virology 24:231–248
    [Google Scholar]
  32. Preston V. G., Davison A. J., Marsden H. S., Timbury M. C., Subak-Sharpe J. H., Wilkie N. M. 1978; Recombinants between herpes simplex virus type 1 and 2: analysis of genome structures and expression of immediate-early polypeptides. Journal of Virology 28:499–517
    [Google Scholar]
  33. Reyes G. R., Lafemina R., Hayward S. D., Hayward G. S. 1979; Morphological transformation by DNA fragments of human herpes viruses: evidence for two distinct transforming regions in herpes simplex virus type 1 and 2 and lack of correlation with biochemical transfer of the thymidine kinase gene. Cold Spring Harbour Symposia on Quantitative Biology 44:629–641
    [Google Scholar]
  34. Rigby P. W. J., Dieckmann M., Rhodes C., Berg P. 1977; Labelling deoxyribonucleic acid to high specific activity in vitro by nick-translation with DNA polymerase I. Journal of Molecular Biology 113:237–251
    [Google Scholar]
  35. Roizman B. 1979; The structure and isomerization of herpes simplex virus genomes. Cell 16:481–494
    [Google Scholar]
  36. Seif I., Khoury G., Dhar R. 1979; BKV splice sequences based on analysis of preferred donor and acceptor sites. Nucleic Acids Research 6:3387–3398
    [Google Scholar]
  37. Sheldrick P., Berthelot N. 1974; Inverted repetitions in the chromosome of herpes simplex virus. Cold Spring Harbor Symposia on Quantitative Biology 39:667–678
    [Google Scholar]
  38. Shenk T. 1978; Construction of a viable SV40 variant containing two functional origins of DNA replication. Cell 13:791–798
    [Google Scholar]
  39. Skare J., Summers W. C. 1977; Structure and function of herpes virus genomes. II. Eco RI, Xba I and Hind III endonuclease cleavage sites on herpes simplex virus type 1 DNA. Virology 76:581–595
    [Google Scholar]
  40. Smith G. R., Schultz D. W., Craseman J. M. 1980; Generalized recombination: nucleotide sequence homology between Chi recombinational hotspots. Cell 19:785–793
    [Google Scholar]
  41. Subramanian K. N., Shenk T. 1978; Definition of the boundaries of the origin of DNA replication in simian virus 40. Nucleic Acids Research 5:3635–3642
    [Google Scholar]
  42. Sutcliffe J. G. 1978; pBR322 restriction maps derived from the DNA sequence: accurate DNA size markers up to 4361 nucleotide pairs long. Nucleic Acids Research 5:2721–2728
    [Google Scholar]
  43. Tanaka T., Weisblum B. 1975; Construction of a colicin E1-R factor composite plasmid in vitro: means for amplification of deoxyribonucleic acid. Journal of Bacteriology 121:354–362
    [Google Scholar]
  44. Timbury M. C. 1971; Temperature-sensitive mutants of herpes simplex virus type 2. Journal of General Virology 13:373–376
    [Google Scholar]
  45. Tjian R. 1978; Protein-DNA interactions at the origin of simian virus 40 DNA replication. Cold Spring Harbor Symposia on Quantitative Biology 43:655–662
    [Google Scholar]
  46. Twigg A. J., Sherratt D. J. 1980; Trans-complementable copy-number mutants of plasmid Col El. Nature, London 283:216–218
    [Google Scholar]
  47. Wadsworth S., Hayward G. S., Roizman B. 1976; Anatomy of herpes simplex virus DNA. V. Terminally repetitive sequences. Journal of Virology 17:503–512
    [Google Scholar]
  48. Wagner M. J., Summers W. C. 1978; Structure of the joint regions and the termini of the DNA of herpes simplex virus type 1. Journal of Virology 27:374–387
    [Google Scholar]
  49. Wilkie N. M. 1973; The synthesis and substructure of herpes virus DNA: the distribution of alkali labile single strand interruptions in HSV-1 DNA. Journal of General Virology 21:453–467
    [Google Scholar]
  50. Wilkie N. M. 1976; Physical maps for herpes simplex type 1 DNA for restriction endonucleases Hind III, Hpa I and Xba I. Journal of Virology 20:222–233
    [Google Scholar]
  51. Wilkie N. M., Cortini R. 1976; Sequence arrangement in herpes simplex virus type 1 DNA: identification of terminal fragments in restriction endonuclease digests and evidence for inversion in redundant and unique sequences. Journal of Virology 20:211–221
    [Google Scholar]
  52. Wilkie N. M., Cortini R., Clements J. B. 1977; Structural studies and physical maps for the herpes simplex virus genome. Journal of Antimicrobial Therapy (Suppl. A) 3:47–62
    [Google Scholar]
  53. Wilkie N. M., Davison A., Chartrand P., Stow N. D., Preston V. G., Timbury M. C. 1978; Recombination in herpes simplex virus: mapping of mutations and analysis of intertypic recombinants. Cold Spring Harbor Symposia on Quantitative Biology 43:827–840
    [Google Scholar]
  54. Wilkie N. M., Clements J. B., Boll W., Mantei N., Lonsdale D., Weissman C. 1979; Hybrid plasmids containing an active thymidine kinase gene of herpes simplex virus type 1. Nucleic Acids Research 7:859–877
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-55-2-315
Loading
/content/journal/jgv/10.1099/0022-1317-55-2-315
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error