sp. 2 Phage α3: A Physical Characterization Free

Abstract

SUMMARY

Phage α3 had a buoyant density of 1.506 g/ml, suggesting a protein capsid. The mol. wt. of the phage genome was 34 ± 1 × 10. A dual genome population was observed and partial denaturation, duplex and restriction analyses facilitated distinction between constituent phages, α3τ and α3ω. Phage α3τ exhibited a 0.7 ± 0.2 × 10 mol. wt. deletion in its genome with respect to α3ω. Both phages were encapsulated by a headful mechanism and the genomes were permuted over 27% and <;18% of their length respectively. It is concluded that stable variants may be isolated and that these phages offer potential, through physical studies, to elucidate the properties of the -α3 system.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-53-2-275
1981-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/53/2/JV0530020275.html?itemId=/content/journal/jgv/10.1099/0022-1317-53-2-275&mimeType=html&fmt=ahah

References

  1. Adams M. H. 1959 Bacteriophages New York: Interscience;
    [Google Scholar]
  2. Bazaral M., Helinski D. R. 1968; Circular DNA forms of colicinogenic factors El, E2 and E3 from Escherichia coli . Journal of Molecular Biology 36:185–194
    [Google Scholar]
  3. Bradley D. E., Rutherford E. L. 1975; Basic characterisation of a lipid-containing bacteriophage specific for plasmids of P, N and W compatibility groups. Canadian Journal of Microbiology 21:152–163
    [Google Scholar]
  4. Coetzee J. N. 1974; High frequency transduction of kanamycin resistance in Proteus mirabilis . Journal of General Microbiology 84:285–296
    [Google Scholar]
  5. Coetzee J. N. 1975; High frequency transduction of resistance to ampicillin and kanamycin in Proteus mirabilis . Journal of General Microbiology 87:173–176
    [Google Scholar]
  6. Coetzee J. N., Smit J. A. 1970; Properties of Proteus mirabilis phage 13 vir. Journal of General Virology 9:247–249
    [Google Scholar]
  7. Coetzee J. N., Lecatsas G., Coetzee W. F. 1979; Properties of R plasmid R772 and the corresponding pilus specific phage PR772. Journal of General Microbiology 110:263–273
    [Google Scholar]
  8. Coetzee W. F., Pretorius G. H. J. 1979; Factors which influence the electron microscopic appearance of DNA when benzyldimethylalkylammonium chloride is used. Journal of Ultrastructure Research 67:33–39
    [Google Scholar]
  9. Jackson E. N., Miller H. I., Adams M. L. 1978a; Eco RI restriction endonuclease cleavage site map of bacteriophage P22. Journal of Mlecular Biology 118:347–363
    [Google Scholar]
  10. Jackson E. N., Jackson D. A., Deans R. J. 1978b; Eco RI analysis of bacteriophage P22 DNA packaging. Journal of Molecular Biology 118:365–388
    [Google Scholar]
  11. Krizsanovich K. 1973; Cryptic lysogeny in Proteus mirabilis . Journal of General Virology 19:311–320
    [Google Scholar]
  12. McDonnel M. W., Simon M. N., Studier R. W. 1977; Analysis of restriction fragments of T7 DNA and determination of molecular weights by electrophoresis in neutral and alkaline gels. Journal of Molecular Biology 110:119–146
    [Google Scholar]
  13. Pretorius G. H. J., Coetzee W. F. 1979; Proteus mirabilis phage 5006M: a physical characterization. Journal of General Virology 45:389–395
    [Google Scholar]
  14. Pretorius G. H. J., Coetzee W. F. 1980; Proteus mirabilis phage 5006M, 5006MHFTk and 5006MHFTah. Physical comparison of genome characteristics. Journal of General Virology 49:33–39
    [Google Scholar]
  15. Robb S. M., Woods D. R., Ross F. T., Struthers J. K. 1977; Rifampicin-resistant mutants supporting bacteriophage growth on stationary phase Achromobacter cells. Journal of General Virology 35:117–123
    [Google Scholar]
  16. Streisinger G., Emrich J., Stahl M. M. 1967; Chromosome structure in phage T4. III. Terminal redundancy and length determination. Proceedings of the National Academy of Sciences of the United States of America 57:292–295
    [Google Scholar]
  17. Thomson J. A., Woods D. R. 1973; Properties of sphaeroplasts of a halotolerant Achromobacter strain in their infection with bacteriophage deoxyribonucleic acid. Journal of General Microbiology 74:71–76
    [Google Scholar]
  18. Thomson J. A., Woods D. R. 1974; Bacteriophages and cryptic lysogeny in Achromobacter . Journal of General Virology 22:153–157
    [Google Scholar]
  19. Thomson J. A., Woods D. R., Welton R. L. 1972; Collagenolytic activity of aerobic halophiles from hides. Journal of General Microbiology 70:315–319
    [Google Scholar]
  20. Tye B-K., Chan R. K., Botstein D. 1974a; Packaging of an oversize transducing genome by Salmonella phage P22. Journal of Molecular Biology 85:485–500
    [Google Scholar]
  21. Tye B-K., Huberman J. A., Botstein D. 1974b; Non-random circular permutation of phage P22 DNA. Journal of Molecular Biology 85:501–532
    [Google Scholar]
  22. Van Dijken M. C., Coetzee W. F. 1980; Alignment of partially denatured DNA molecules. Biochimica et Biophysica Acta (in press)
    [Google Scholar]
  23. Watanabe T., Ogata Y., Chan R. K., Botstein D. 1972; Specialised transduction of tetracycline resistance by phage P22 in Salmonella typhimurium. I. Transduction of R factor 222 by phage P22. Virology 50:874–882
    [Google Scholar]
  24. Weigle J., Meselson M. 1959; Density alterations associated with transducing ability in the bacteriophage lambda. Journal of Molecular Biology 1:379–386
    [Google Scholar]
  25. Woods D. R. 1976; Bacteriophage growth on stationary phase Achromobacter cells. Journal of General Virology 32:45–50
    [Google Scholar]
  26. Woods D. R., Thomson J. A. 1975; Unstable generalised transduction in Achromobacter . Journal of General Microbiology 88:86–92
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-53-2-275
Loading
/content/journal/jgv/10.1099/0022-1317-53-2-275
Loading

Data & Media loading...

Most cited Most Cited RSS feed