The Envelope of Vaccinia and Orf Viruses: an Electron-cytochemical Investigation Free

Abstract

Summary

Orf and vaccinia virus preparations adsorbed to carbon coated grids were treated in various ways. Two general patterns of degradation were noted. The particle lost its shape and increased in surface area when the internal envelope disintegrated. When the membranous external envelope was degraded no change in virus size or shape was noted. The range of agents that degraded the external envelope suggests that it is a lipid-protein (probably proteolipid) membrane.

The internal envelope was degraded by treatment with ether followed by trypsin but not by the reverse sequence or by either agent alone. From this and other experiments it was deduced that the internal envelope subunits are protein covered by lipid, the major portion of which is phosphoglyceride and triglyceride. The simplest model of the envelope consistent with the evidence comprises an internal envelope subunit protein associated with the polar ends of a layer of orientated phosphoglyceride molecules whose non-polar parts are in turn associated with a layer of triglyceride molecules. The residual space, bounded by adjacent subunits and by the external envelope, is occupied by cholesterol.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-5-2-211
1969-09-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/5/2/JV0050020211.html?itemId=/content/journal/jgv/10.1099/0022-1317-5-2-211&mimeType=html&fmt=ahah

References

  1. Adams C. W. M., Bayliss O. B. 1968; Histochemistry of myelin. VI. Solvent action of acetone on brain and other lipid-rich tissues. J. Histochem. Cytochem 16:115
    [Google Scholar]
  2. Allison A. C., Burke D. C. 1962; The nucleic acid content of viruses. J. gen. Microbiol 27:181
    [Google Scholar]
  3. Autilio L. A., Norton W. T. 1963; Non-aqueous solvent extracts of lyophilised bovine brain white matter. J. Neurochem 10:733
    [Google Scholar]
  4. Buttner D., Giese H., Muller G., Peters D. 1964; Die finestruktur reifer elementarkorper des ecthyema contagiosum und der stomatitis papulosa. Arch. ges. Virusforsch 14:657
    [Google Scholar]
  5. Dales S. 1963; The uptake and development of vaccinia virus in strain L cells followed with labelled viral deoxyribonucleic acid. J. Cell Biol 18:51
    [Google Scholar]
  6. Dervichian D. G. 1964; The physical chemistry of phospholipids. Prog. Biophys. biophys. Chem 14:263
    [Google Scholar]
  7. Easterbrook K. B. 1966; Controlled degradation of vaccinia virus in vitro. J. Ultrastruct. Res 14:484
    [Google Scholar]
  8. Hanahan D. 1960; Lipide Chemistry. 208–325 New York: John Wiley and Sons;
    [Google Scholar]
  9. Harris W. J., Westwood J. C. N. 1964; Phosphotungstate staining of vaccinia virus. J. gen. Microbiol 34:491
    [Google Scholar]
  10. Hoagland C. L., Smadel J. E., Rivers T. M. 1940; Constituents of elementary bodies of vaccinia. J. exp. Med 71:737
    [Google Scholar]
  11. Joklik W. K. 1964a; Intracellular uncoating of poxvirus DNA. I. J. molec. Biol 8:263
    [Google Scholar]
  12. Joklik W. K. 1964b; Intracellular uncoating of poxvirus DNA. II. J. molec. Biol 8:277
    [Google Scholar]
  13. Joklik W. K. 1966; The poxviruses. Bact. Rev. 30:33
    [Google Scholar]
  14. Joklik W. K., Becker Y. 1964; The replication and coating of vaccinia DNA. J. molec. Biol 10:452
    [Google Scholar]
  15. Kunttz M. 1950; Crystalline deoxyribonuclease. J. gen. Physiol 33:349
    [Google Scholar]
  16. Laskowski M. 1955; Trypsinogen and trypsin. In Methods in Enzymology II26–36 New York: Academic Press;
    [Google Scholar]
  17. Lebaron F. N., Folch J. 1956; The isolation from brain tissue of a trypsin-resistant protein fraction containing combined inositol, and its relation to neurokeratin. J Neurochem 1:101
    [Google Scholar]
  18. Nagington J., Horne R. W. 1962; Morphological studies of orf and vaccinia viruses. Virology 16:248
    [Google Scholar]
  19. Nagington J., Newton A. A., Horne R. W. 1964; The structure of orf virus. Virology 23:461
    [Google Scholar]
  20. Peters D. 1956; Morphology of resting vaccinia virus. Nature, Lond 178:1453
    [Google Scholar]
  21. Peters D. 1958; Struktur und Entwicklung der Pockenviren. Intern Kongr. Elektronenmikroskopie Berlin4552
    [Google Scholar]
  22. Peters D. 1960; Strukturaufklarung am elementarkorper des vaccine-virus durch abbau mit trypsin. Proc. Eur. reg. Conf. Electron Microsc 2:694
    [Google Scholar]
  23. Peters D., Muller G., Buttner D. 1964; The fine structure of paravaccinia viruses. Virology 23:609
    [Google Scholar]
  24. Sarov I., Becker Y. 1967; Studies on vaccinia virus DNA. Virology 33:369
    [Google Scholar]
  25. Smadel J. E., Lavin G. I., Dubos R. J. 1940; Some constituents of elementary bodies of vaccinia. J. exp. Med 71:373
    [Google Scholar]
  26. Westwood J. C. N., Harris W. J., Zwartouw H. T., Titmuss D. H. J., Appleyard G. 1964; Studies on the structure of vaccinia virus. J. gen. Microbiol 34:67
    [Google Scholar]
  27. Zwartouw H. T. 1964; The chemical composition of vaccinia virus. J. gen. Microbiol 34:115
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-5-2-211
Loading
/content/journal/jgv/10.1099/0022-1317-5-2-211
Loading

Data & Media loading...

Most cited Most Cited RSS feed